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Rubik’s cube graph: 
 
Vertices = configurations 
 
Edges = elementary moves (face rotations) 



Rubik’s cube graph: 

Goal: understand the shape / size / topology of this 
configuration space. 



Size:  
!ere are roughly 43 10^18 different configurations. 



Size:  
!ere are roughly 43 10^18 different configurations. 

Corollary:  
Humanity has never seen all configurations. 



Size:  
!ere are roughly 43 10^18 different configurations. 

Corollary:  
Humanity has never seen all configurations. 

Proof:  
Rubik’s cube is 42 years old.  
!ere are roughly 350 million cubes, less than 10^9. 
Roughly 10^4 moves an hour. 
Roughly 10^4 hours a year.  
So we’ve certainly seen at most 42 10^17 configurations. 



!eorem (Rokicki-Kociemba-Davidson-Dethridge, 2011) 

!e diameter of the Rubik graph is 20. 



!eorem (Rokicki-Davidson, 2015) 

!e diameter of the Rubik graph with the quarter-turn 
metric is 26. 



!e board cannot be covered. 



!e board cannot be covered. 



!e board cannot be covered. 



!e board cannot be covered. 



Flip graph:  
Flip two side by side dominos to get a new tiling. 



Flip graph:  
Flip two side by side dominos to get a new tiling. 



!eorem (!urston, Elkies-Kuperberg-Propp) 

!e flip graph of a simply connected shape is connected.



!eorem (Temperly-Fischer, Kasteleyn, 1961) 

!e number of tilings of an n by n square (n even) is 
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Observation (P.- Zappa using Saldanha-Tomei-Casarin-Romualdo)  

!e diameter of the flip graph of an n by n square (n even) is
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Secret goal in life: 

Understand all 2-dimensional manifolds

Moduli spaces: 

Configuration spaces of conformal structures on surfaces up 
to biholomorphic equivalence



Smooth world: 

Hyperbolic structures on 
surfaces

Moduli space: 

Mg  is the space of hyperbolic 
surfaces of genus g up to 
isometry
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Weil-Petersson metric:  

Kähler metric on Tg  defined on the co-tangent space Q(X): 

Let X be a point of Teichmüller space with line element 
and Q(X) be the space of holomorphic quadratic 
differentials (i.e., locally of the form h(z)dz2). 

For φ, ψ ∈ Q(X) we obtain a Hermitian inner product 
given by

!e Weil-Petersson metric is given by taking the real part. 
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Weil-Petersson metric:  

Volume is very natural: given by the standard volume 
with Fenchel-Nielsen coordinates described before: 

dV = dl1 ^ … ^ dl3g-3 ^ dτ1 ^ … ^ dτ3g-3



Smooth world: 

Hyperbolic structures on 
surfaces

Combinatorial world: 

Surfaces obtained by gluing 
triangles

Combinatorial moduli space: 

C2N  is the set of combinatorial 
surfaces with 2N triangles up 
to isomorphism

Moduli space: 

Mg  is the space of hyperbolic 
surfaces of genus g up to 
isometry







Size and shape of moduli space:  

!eorem (Schumacher-Trapani)

!eorem (Cavendish-P.)
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Vol(Mg) ⇡ g2g

where ⇡ is up to exponential function in g.

diam(Mg) ⇡
p
g

where ⇡ is up to logarithmic function in g.
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Size and shape of combinatorial moduli space:  

!eorem (Bollobás, Penner)

!eorem (Disarlo-P.)
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Card(C2N ) ⇡ g2g

where ⇡ is up to exponential function in g.

diam(C2N ) ⇡ g log(g)

where ⇡ is up to universal multiplicative constants.

1

BRIEF ARTICLE

THE AUTHOR

Card(C2N ) ⇡ g2g

where ⇡ is up to exponential function in g.

diam(C2N ) ⇡ g log(g)

where ⇡ is up to universal multiplicative constants.

1



Random surfaces in        :  

Have “expander type”* properties (Mirzakhani) 
small systole (Mirzakhani) 
but large pants** (Guth-P.-Young)

Random surfaces in         :  

Have “expander type” properties (Kolmogorov/Brooks-
Makover) 
small systole (Petri) 
but large pants (Guth-P.-Young)
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* Expander type means λ1>c>0 



Work in progress with Guth-Young:  

!e moduli space of genus g surfaces of area 
approximately A and bounded geometry* at scale 1 is 
connected.

* Bounded geometry at scale 1 means norm of curvature at most 1  
and injectivity radius at least 1



Flip graphs of polygons:  

Sleator-Tarjan-!urston (1988) 

652 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON 

FIGURE 4. The rotation graph of a hexagon, RG(6). 

The added symmetry revealed in the triangulation system that is hidden in 
the binary tree system enables us to improve Culik and Wood's upper bound on 
d (n) from 2n - 6 to 2n - 10 . 

Lemma 2. d(n):::; 2n - 10 for all n> 12. 

Proof. Any triangulation of an n-gon has n - 3 diagonals. Given any vertex 
x of degree deg(x) < n - 3, we can increase deg(x) by one by a suitable flip. 
Thus in n-3-deg(x) flips we can produce the unique triangulation all of whose 
diagonals have one end at x. It follows that given any two triangulations " and 
'2 we can convert " into '2 in 2n-6-deg,(x)-deg2(x) flips, where x is any 
vertex and the degree of x is deg, (x) in " and deg2 (x) in '2' The average 
over vertices x of deg, (x) is 2 - 6/n, and of deg, (x) + deg2(x) is 4 - 12/n . 
It follows that if n> 12, there is a vertex x such that deg, (x) + deg2 (x) 4. 
o 

The following lemma about sequences of diagonal flips shows that in some 
situations it is easy to find the first flip in an optimal sequence of flips. 

Lemma 3. (a) If it is possible to flip one diagonal of " creating ,; so that ,; 
has one more diagonal in common with '2 than does '" then there exists a 
shortest path from " to '2 in which the first flip creates ,;. (b) If " and '2 
have a diagonal in common, then a shortest path from " to '2 never flips this 
diagonal. In fact, any path that flips this diagonal is at least two flips longer than 
a shortest path. 

Proof. Let S be a sequence of adjacent triangulations connecting " to '2' 

S=to(="),t,,t2, ... ,tk (='2)· 



!eorem (Sleator-Tarjan-!urston)  
For sufficiently large n, the diameter of the flip 
graph of an n-gon is 2n-10. 

652 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON 

FIGURE 4. The rotation graph of a hexagon, RG(6). 

The added symmetry revealed in the triangulation system that is hidden in 
the binary tree system enables us to improve Culik and Wood's upper bound on 
d (n) from 2n - 6 to 2n - 10 . 

Lemma 2. d(n):::; 2n - 10 for all n> 12. 

Proof. Any triangulation of an n-gon has n - 3 diagonals. Given any vertex 
x of degree deg(x) < n - 3, we can increase deg(x) by one by a suitable flip. 
Thus in n-3-deg(x) flips we can produce the unique triangulation all of whose 
diagonals have one end at x. It follows that given any two triangulations " and 
'2 we can convert " into '2 in 2n-6-deg,(x)-deg2(x) flips, where x is any 
vertex and the degree of x is deg, (x) in " and deg2 (x) in '2' The average 
over vertices x of deg, (x) is 2 - 6/n, and of deg, (x) + deg2(x) is 4 - 12/n . 
It follows that if n> 12, there is a vertex x such that deg, (x) + deg2 (x) 4. 
o 

The following lemma about sequences of diagonal flips shows that in some 
situations it is easy to find the first flip in an optimal sequence of flips. 

Lemma 3. (a) If it is possible to flip one diagonal of " creating ,; so that ,; 
has one more diagonal in common with '2 than does '" then there exists a 
shortest path from " to '2 in which the first flip creates ,;. (b) If " and '2 
have a diagonal in common, then a shortest path from " to '2 never flips this 
diagonal. In fact, any path that flips this diagonal is at least two flips longer than 
a shortest path. 

Proof. Let S be a sequence of adjacent triangulations connecting " to '2' 

S=to(="),t,,t2, ... ,tk (='2)· 



!eorem (Pournin) 
For n>12 the diameter of the flip graph of an n-
gon is 2n-10. 

652 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON 

FIGURE 4. The rotation graph of a hexagon, RG(6). 

The added symmetry revealed in the triangulation system that is hidden in 
the binary tree system enables us to improve Culik and Wood's upper bound on 
d (n) from 2n - 6 to 2n - 10 . 

Lemma 2. d(n):::; 2n - 10 for all n> 12. 

Proof. Any triangulation of an n-gon has n - 3 diagonals. Given any vertex 
x of degree deg(x) < n - 3, we can increase deg(x) by one by a suitable flip. 
Thus in n-3-deg(x) flips we can produce the unique triangulation all of whose 
diagonals have one end at x. It follows that given any two triangulations " and 
'2 we can convert " into '2 in 2n-6-deg,(x)-deg2(x) flips, where x is any 
vertex and the degree of x is deg, (x) in " and deg2 (x) in '2' The average 
over vertices x of deg, (x) is 2 - 6/n, and of deg, (x) + deg2(x) is 4 - 12/n . 
It follows that if n> 12, there is a vertex x such that deg, (x) + deg2 (x) 4. 
o 

The following lemma about sequences of diagonal flips shows that in some 
situations it is easy to find the first flip in an optimal sequence of flips. 

Lemma 3. (a) If it is possible to flip one diagonal of " creating ,; so that ,; 
has one more diagonal in common with '2 than does '" then there exists a 
shortest path from " to '2 in which the first flip creates ,;. (b) If " and '2 
have a diagonal in common, then a shortest path from " to '2 never flips this 
diagonal. In fact, any path that flips this diagonal is at least two flips longer than 
a shortest path. 

Proof. Let S be a sequence of adjacent triangulations connecting " to '2' 

S=to(="),t,,t2, ... ,tk (='2)· 



!e graph for n=8 (Project with Bell and Pournin) 

Graph computed using Mark Bell’s program “Flipper”, 
visualized using “Gephi”



!e graph for n=8 

Re-arranged using an algorithm developed by Yifan Hu



!e graph for n=11 

Graph computed using Mark Bell’s program 
“Flipper”, visualized using “Gephi”



!e graph for n=11 

Re-arranged using an algorithm developed by Yifan Hu



!e modular graph for n=11


