# Puzzles, triangulations and moduli spaces 

May 25th, 2016, CAaGiG, Anogeia

Hugo Parlier
Université de Fribourg



Rubik's cube graph:
Vertices $=$ configurations
Edges $=$ elementary moves (face rotations)


Rubik's cube graph:
Goal: understand the shape / size / topology of this configuration space.

Size:
There are roughly 43 10^18 different configurations.

Size:
There are roughly 43 10^18 different configurations.

Corollary:
Humanity has never seen all configurations.

Size:
There are roughly 43 10^18 different configurations.

Corollary:
Humanity has never seen all configurations.

Proof:
Rubik's cube is 42 years old.
There are roughly 350 million cubes, less than $10^{\wedge} 9$.
Roughly $10^{\wedge} 4$ moves an hour.
Roughly $10^{\wedge} 4$ hours a year.
So we've certainly seen at most 42 10^17 configurations.


Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2011)
The diameter of the Rubik graph is 20 .


Theorem (Rokicki-Davidson, 2015)
The diameter of the Rubik graph with the quarter-turn metric is 26 .


The board cannot be covered.


Flip graph:
Flip two side by side dominos to get a new tiling.


Flip graph:
Flip two side by side dominos to get a new tiling.


Theorem (Thurston, Elkies-Kuperberg-Propp)
The flip graph of a simply connected shape is connected.


## Theorem (Temperly-Fischer, Kasteleyn, 1961)

The number of tilings of an $n$ by $n$ square ( $n$ even) is

$$
\Pi_{j, k=1}^{\frac{n}{2}}\left(4 \cos ^{2}\left(\frac{\pi j}{n+1}\right)+4 \cos ^{2}\left(\frac{\pi k}{n+1}\right)\right)
$$



Observation (P.- Zappa using Saldanha-Tomei-Casarin-Romualdo) The diameter of the flip graph of an $n$ by n square ( $n$ even) is

$$
\frac{n^{3}-n}{6}
$$

## Secret goal in life:

Understand all 2-dimensional manifolds


## Moduli spaces:

Configuration spaces of conformal structures on surfaces up to biholomorphic equivalence

## Smooth world:

Hyperbolic structures on surfaces


Moduli space:
$M_{g}$ is the space of hyperbolic surfaces of genus $g$ up to isometry

Parameters for hyperbolic surfaces


Teichmillerspace $J_{g}: \quad\left(\mathbb{R}^{>0}\right)^{3 g-3} \times \mathbb{R}^{3 g-3}$


$$
\tilde{J}_{g} / \text { isometry }+=J_{g} / M^{2} G\left(\Sigma_{g}\right)=\mu,
$$

Metric study of $\mu_{g}$ via $M^{c} G\left(\Sigma_{g}\right)$-invariant metric on $J_{g}$

## Weil-Petersson metric:

Kähler metric on $T_{g}$ defined on the co-tangent space $Q(X)$ :
Let $X$ be a point of Teichmüller space with line element $\rho$ and $Q(X)$ be the space of holomorphic quadratic differentials (i.e., locally of the form $h(z) d z^{2}$ ).

For $\varphi, \Psi \in Q(X)$ we obtain a Hermitian inner product given by

$$
<\varphi, \psi>:=\int_{X} \frac{\varphi \bar{\psi}}{\rho^{2}}
$$

The Weil-Petersson metric is given by taking the real part.

## Weil-Petersson metric:

Volume is very natural: given by the standard volume with Fenchel-Nielsen coordinates described before:

$$
\mathrm{dV}=\mathrm{dl}_{1} \wedge \ldots{ }^{\wedge} \mathrm{dl}_{3 \mathrm{~g}-3} \wedge \mathrm{~d} \mathrm{~T}_{1} \wedge \ldots{ }^{\wedge} \mathrm{d}_{3 \mathrm{~g}-3}
$$

## Smooth world:

Hyperbolic structures on surfaces

Combinatorial world:
Surfaces obtained by gluing triangles


## Moduli space:

Combinatorial moduli space:
$M_{g}$ is the space of hyperbolic surfaces of genus $g$ up to isometry
$C_{2 N}$ is the set of combinatorial surfaces with 2 N triangles up to isomorphism


Collection of $2 N$ randomly glued together Euclidean triangles of side length 1 such that:

- result is orientable
- (slight simplification) there is only 1 vertex


Denote $\varphi_{2 N}=\{$ this set $\}$ simplicial automorphism

Volume $\longleftrightarrow$ Cardinality

Distance?


For $T, T^{\prime} \in \zeta_{2 N}:$
distance $\left(T, T^{\prime}\right):=$ min \# of flips between $T$ and $T^{\prime}$

Flip graph FLiP ${ }^{\top}, T^{1}$ associated to $\zeta_{2 \mathrm{~V}}$ is always connected

## Size and shape of moduli space:

Theorem (Schumacher-Trapani)

$$
\operatorname{Vol}\left(\mathcal{M}_{g}\right) \approx g^{2 g}
$$

where $\approx$ is up to exponential function in $g$.

Theorem (Cavendish-P.)

$$
\operatorname{diam}\left(\mathcal{M}_{g}\right) \approx \sqrt{g}
$$

where $\approx$ is up to logarithmic function in $g$.

## Size and shape of combinatorial moduli space:

Theorem (Bollobás, Penner)

$$
\operatorname{Card}\left(\mathcal{C}_{2 N}\right) \approx g^{2 g}
$$

where $\approx$ is up to exponential function in $g$.

Theorem (Disarlo-P.)

$$
\operatorname{diam}\left(\mathcal{C}_{2 N}\right) \approx g \log (g)
$$

where $\approx$ is up to universal multiplicative constants.

Random surfaces in $\mathcal{M}_{g}$ :
Have "expander type"* properties (Mirzakhani) small systole (Mirzakhani) but large pants** (Guth-P.-Young)

Random surfaces in $\mathcal{C}_{2 N}$ :
Have "expander type" properties (Kolmogorov/BrooksMakover) small systole (Petri) but large pants (Guth-P.-Young)

* Expander type means $\lambda_{1}>\mathrm{c}>0$
** Large pants means all pants decompositions of length at least $g^{7 / 6-\varepsilon}$


## Work in progress with Guth-Young:

The moduli space of genus $g$ surfaces of area approximately A and bounded geometry* at scale 1 is connected.


Figure 4. The rotation graph of a hexagon, $R G(6)$.
Flip graphs of polygons:
Sleator-Tarjan-Thurston (1988)


Figure 4. The rotation graph of a hexagon, $R G(6)$.
Theorem (Sleator-Tarjan-Thurston) For sufficiently large n , the diameter of the flip graph of an n -gon is $2 \mathrm{n}-10$.


Figure 4. The rotation graph of a hexagon, $R G(6)$.

## Theorem (Pournin)

For $n>12$ the diameter of the flip graph of an $n$ gon is $2 \mathrm{n}-10$.

The graph for $\mathrm{n}=8$ (Project with Bell and Pournin)
Graph computed using Mark Bell's program "Flipper", visualized using "Gephi"


The graph for $\mathrm{n}=8$
Re-arranged using an algorithm developed by Yifan Hu

## The graph for $\mathrm{n}=11$

Graph computed using Mark Bell's program "Flipper", visualized using "Gephi"


The graph for $\mathrm{n}=11$
Re-arranged using an algorithm developed by Yifan Hu


The modular graph for $\mathrm{n}=11$

