Puzzles, triangulations and moduli spaces

May 25th, 2016, CAaGiG, Anogeia

Hugo Parlier Université de Fribourg

Rubik's cube graph:

Vertices = configurations

Edges = elementary moves (face rotations)

Rubik's cube graph:

Goal: understand the shape / size / topology of this configuration space.

Size:

There are roughly 43 10¹⁸ different configurations.

Size:

There are roughly 43 10¹⁸ different configurations.

Corollary:

Humanity has never seen all configurations.

Size:

There are roughly 43 10¹⁸ different configurations.

Corollary:

Humanity has never seen all configurations.

Proof:

Rubik's cube is 42 years old.

There are roughly 350 million cubes, less than 10⁹.

Roughly 10⁴ moves an hour.

Roughly 10⁴ hours a year.

So we've certainly seen at most 42 10¹⁷ configurations.

Theorem (Rokicki-Kociemba-Davidson-Dethridge, 2011) The diameter of the Rubik graph is 20.

Theorem (Rokicki-Davidson, 2015)

The diameter of the Rubik graph with the *quarter-turn* metric is 26.

Flip graph:

Flip two side by side dominos to get a new tiling.

Flip graph:

Flip two side by side dominos to get a new tiling.

Theorem (Thurston, Elkies-Kuperberg-Propp)

The flip graph of a simply connected shape is connected.

Theorem (Temperly-Fischer, Kasteleyn, 1961)

The number of tilings of an n by n square (n even) is

$$\Pi_{j,k=1}^{\frac{n}{2}} \left(4\cos^2\left(\frac{\pi j}{n+1}\right) + 4\cos^2\left(\frac{\pi k}{n+1}\right) \right)$$

Observation (P.- Zappa using Saldanha-Tomei-Casarin-Romualdo)

The diameter of the flip graph of an n by n square (n even) is

$$\frac{n^3-n}{6}$$

Secret goal in life:

Understand all 2-dimensional manifolds

Moduli spaces:

Configuration spaces of conformal structures on surfaces up to biholomorphic equivalence

Smooth world:

Hyperbolic structures on surfaces

Moduli space:

 M_g is the space of hyperbolic surfaces of genus g up to isometry

Parameters for hyperbolic surfaces

$$l_{1} := \ell(\delta_{1})_{1}, \dots, \ell_{3g-3} := \ell(\delta_{3g-3}) \in \mathbb{R}^{20}$$
 $T_{1}, \dots, T_{3g-3} \in \mathbb{R}$

Teichmin ler space Jo: (12) 39-3 × 12 39-3

Metric study of Ug via M'G(Zg)-invariant metrics on Jg

Weil-Petersson metric:

Kähler metric on T_g defined on the co-tangent space Q(X):

Let X be a point of Teichmüller space with line element ρ and Q(X) be the space of holomorphic quadratic differentials (i.e., locally of the form $h(z)dz^2$).

For φ , $\psi \in Q(X)$ we obtain a Hermitian inner product given by $\int \varphi \overline{\psi}$

$$<\varphi,\psi>:=\int_X \frac{\varphi\psi}{\rho^2}$$

The Weil-Petersson metric is given by taking the real part.

Weil-Petersson metric:

Volume is very natural: given by the standard volume with Fenchel-Nielsen coordinates described before:

$$dV = dl_1 \wedge ... \wedge dl_{3g-3} \wedge d\tau_1 \wedge ... \wedge d\tau_{3g-3}$$

Smooth world:

Hyperbolic structures on surfaces

Combinatorial world:

Surfaces obtained by gluing triangles

Moduli space:

surfaces of genus g up to isometry

Combinatorial moduli space:

 M_g is the space of hyperbolic C_{2N} is the set of combinatorial surfaces with 2N triangles up to isomorphism

Collection of 2N randomly glued together Euclidean triangles of side length 1 such that:

- . result is orientable
- . (slight simplification) there is only 1 vertex

Denote
$$C_{2N} = \{ +his set \} / simplicial automorphism$$

Volume => Gardinality

Distance? //// Flip

distance (T,T') = min # of flips between T and T'

Flip graph

T

associated to C2N is always connecled

FLip

Size and shape of moduli space:

Theorem (Schumacher-Trapani)

$$Vol(\mathcal{M}_g) \approx g^{2g}$$

where \approx is up to exponential function in g.

Theorem (Cavendish-P.)

$$\operatorname{diam}(\mathcal{M}_g) \approx \sqrt{g}$$

where \approx is up to logarithmic function in g.

Size and shape of combinatorial moduli space:

Theorem (Bollobás, Penner)

$$\operatorname{Card}(\mathcal{C}_{2N}) \approx g^{2g}$$

where \approx is up to exponential function in g.

Theorem (Disarlo-P.)

$$\operatorname{diam}(\mathcal{C}_{2N}) \approx g \log(g)$$

where \approx is up to universal multiplicative constants.

Random surfaces in \mathcal{M}_g :

Have "expander type"* properties (Mirzakhani) small systole (Mirzakhani) but large pants** (Guth-P.-Young)

Random surfaces in C_{2N} :

Have "expander type" properties (Kolmogorov/Brooks-Makover) small systole (Petri) but large pants (Guth-P.-Young)

* Expander type means $\lambda_1>c>0$

** Large pants means all pants decompositions of length at least $g^{7/6-\varepsilon}$

Work in progress with Guth-Young:

The moduli space of genus g surfaces of area approximately A and bounded geometry* at scale 1 is connected.

^{*}Bounded geometry at scale 1 means norm of curvature at most 1 and injectivity radius at least 1

FIGURE 4. The rotation graph of a hexagon, RG(6).

Flip graphs of polygons:

Sleator-Tarjan-Thurston (1988)

FIGURE 4. The rotation graph of a hexagon, RG(6).

Theorem (Sleator-Tarjan-Thurston)
For sufficiently large n, the diameter of the flip graph of an n-gon is 2n-10.

FIGURE 4. The rotation graph of a hexagon, RG(6).

Theorem (Pournin)

For n>12 the diameter of the flip graph of an n-gon is 2n-10.

The graph for n=8 (Project with Bell and Pournin)

Graph computed using Mark Bell's program "Flipper", visualized using "Gephi"

The graph for n=8

Re-arranged using an algorithm developed by Yifan Hu

The graph for n=11

Graph computed using Mark Bell's program "Flipper", visualized using "Gephi"

The graph for n=11

Re-arranged using an algorithm developed by Yifan Hu

The modular graph for n=11