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What is Ricci flow?

Let M be a compact manifold, ∂M = ∅. A family (g(t))t∈[0,T ) of
Riemannian metrics on M is a Ricci flow (RF) if

∂

∂t
g(t) = −2 Ric(g(t)).

I Given g0 there exists ε > 0 and a unique smooth (RF) g(t),
t ∈ [0, ε], such that g(0) = g0. (Hamilton)

I Analogue of the heat diffusion equation, ∂
∂t u = ∆u, for

Riemannian metrics. In fact, in harmonic coordinates, i.e.
∆gx i = 0,

−2 Ric(g)ij = ∆ggij + Q(g, ∂g)ij .

I Expectation: Ricci flow tries to find ‘optimal’ geometry on M and
maximize amount of symmetry. Justified by examples.
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Examples

I dim M = 2: As t →∞, the volume normalized Ricci flow
converges to a constant positive, zero or negative curvature
metric, depending on genus. (Hamilton, Chow)

I dim M = 3 with Ric(g0) > 0, and dim M > 3 with Rm(g0) > 0: The
volume normalized flow converges to a constant positive
curvature metric, as t →∞. (Hamilton, Böhm–Wilking)

I dim M = 3, Ricci flow with surgery (Hamilton, Perelman): Ricci
flow decomposes manifold into smaller pieces and converges to a
special geometric structure (locally homogeneous) in each of
them.

I But need to deal with singularities.
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Singularities

Ricci flow is non-linear and existence of ‘optimal’ geometry depends
on the topology of M. The flow typically develops singularities: smooth
flow exists on a maximal time interval [0,T ), T <∞ and

lim
t→T

max
M
|Rm(g(t))|g(t) =∞.

I Shrinking sphere: (Sn,g(t)), g(t) = (1− 2(n − 1)t)ground ,
ground metric of sphere of radius 1. Flow exists for finite time
T = 1/2(n − 1).

I Neck-pinch singularity on Sn+1, n ≥ 2. (Angenent–Knopf):
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Dealing with singularities

Find way to flow after a singularity, possibly with change in topology:

I Ricci flow with surgery: Hamilton, Perelman in dim M = 3, and
Hamilton, Chen–Zhu in dim M = 4, under curvature assumptions.

I In general, much more complex behaviour.
I Feldman–Ilmanen–Knopf: Example of non-compact smooth Ricci

flow that converges to a cone, and then changes topology,
becomes smooth and continues after the singularity.
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Geometry of singularities

Theorem (Naber, Enders–Müller–Topping)
Let (g(t))t∈[−T ,0) be a Type I Ricci flow and p ∈ M be a singular point.
Then for any λk ↘ 0 the dilated flows (M, λ−1

k g(λk t),p)t∈[−λ−1
k T ,0)

converge, as k →∞, to a non-flat flow (N,h(t))t∈(−∞,0) which has
special structure: gradient shrinking Ricci soliton.

Sn+1, n>1

SnxR

I A gradient shrinking ricci soliton is a Ricci flow on N of the form
h(t) = −tϕ∗t g, t ∈ (−∞,0), ϕt family of diffeomorphisms,
ϕ−1 = idN .

I Think of a GSRS as a fixed point of the flow, modulo
diffeomorphisms and scalings.
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Conical structure of singularities

I If a singular Ricci flow (M,g(t))t∈[0,T ) converges to a singular
space (X ,dX ) as t → T , we would like to be able to restart the
flow, with (X ,dX ) as initial data.

I The structure of X is far from being understood.
I Evidence that its singularities have conical structure.

Theorem (Munteanu–Wang)
Let (Mn,g, f ) be a non-compact GSRS with Ric→ 0 at infinity. Then it
is asymptotic to the cone (C(X ),gc) over a closed (n − 1)-dimensional
Riemannian manifold (X ,gX ), namely C(X ) = (0,+∞)× X and
gc = dr2 + r2gX .
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Question

I Given (M,g0) smooth, away from a finite number of conical
singularities, does there exist a smooth Ricci flow coming out of
(M,g0)?

I The case dim M = 3 follows from work of M. Simon.
I Analogous question for: network flow (Ilmanen–Neves–Schulze)

and Lagrangian mean curvature flow. (Begley–Moore)
I Asymptotically conical expanding Ricci solitons: special solutions

of Ricci flow coming out of cones.
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Expanding Ricci solitons

I Expanding gradient Ricci solitons (EGRS), (N,g, f ) such that
Ric(g) + Hess f = −g

2 .

I Ricci flow ge(t) = tϕ∗t g, t ∈ (0,+∞), where ϕt generated by −1
t∇f

and ϕ1 = idN .

Asymptotically conical expanders:

I Bryant: rotationally symmetric on Rn,
asymptotic to C(Sn−1) with
(Sn−1, cground ), c ∈ (0,1).

I Schulze–Simon: Expanders with
Rm > 0 coming out of cones.

I Deruelle: Rm ≥ 0, asymptotic to
cones C(Sn−1) with Rm(gSn−1) ≥ 1.

I H-D. Cao, Feldman–Ilmanen–Knopf:
asymptotic to Cn/Zk .
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Main result

Theorem (G–Schulze)
Let (M,g0) be a Riemannian manifold, smooth away from q0 ∈ M, and
a conical singularity modeled on (C(Sn−1),gc = dr2 + r2gSn−1) at q0.

Suppose that Rm(gc) > 0. Then there exists a smooth Ricci flow
(g(t))t∈(0,T ] on M which satisfies

1. maxM |Rm(g(t))|g(t) ≤ C/t .
2. (M,g(t)) converges to (M,g0) in the sense of metric spaces (in

the Gromov-Hausdorff topology), as t → 0.
3. There is Ψ : M \ {q0} → M, diffeomorphism onto its image, such

that Ψ∗g(t)→ g0 smoothly and uniformly away from q0, as t → 0.
4. For any λk ↘ 0 and q 6∈ ImΨ, the sequence

(M, λ−1
k g(λk t),q)t∈(0,λ−1

k T ]
converges smoothly to the flow

generated by the unique expander asymptotic to the cone
(C(Sn−1),gc).
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Idea of proof

I By a result of Deruelle, given C(Sn−1) with Rm(gc) > 0, there is a
unique EGRS (N,g, f ) asymptotic to C(Sn−1) at infinity, N ≡ Rn,
and Rm(g) > 0.

I Desingularize (M,g0) by gluing large pieces of (N,g) at small
scales si ↘ 0 to obtain (M,g0,si ).

I Consider the associated sequence of Ricci flows (M,gsi (t))t∈(0,Ti ]

with gsi (0) = g0,si and obtain uniform estimates.
I Since |Rm(g0,si )| ∼ s−1

i standard theory only gives Ti ∼ si .
I Pass to a limit flow (g(t))t∈(0,T ].
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Perelman’s pseudolocality theorem

Theorem
There exists ε(n) > 0 such that if (Mn,g(t))t∈[0,(εr)2] is a complete Ricci
flow and

volg(0)(Bg(0)(x , r)) ≥ (1− ε)ωnrn,

|Rm(g(0))|g(0) ≤ r−2, in Bg(0)(x , r),

then |Rm(g(t))|g(t) ≤ (εr)−2 in Bg(0)(x , εr) and t ∈ [0, (εr)2].

I Obtain control in regions with ‘almost Euclidean’ volume.
I For some time, extreme high curvature outside Bg(0)(x , r) does

not influence the flow in Bg(0)(x , εr) significantly.
I That is very different from the behaviour of solutions of the heat

equation!
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Estimating the flow away from the singular point

I Apply the pseudolocality theorem to the approximators
(M,gsi (t))t∈[0,Ti ] away from the red region, where (M,g0,si ) is
close to the cone (C(Sn−1),gc).

t

M

M, t=0

I By the Ricci flow equation, gsi (t) remains close to g(0) outside the
grey, ‘expanding region’ (uniformly as si → 0).

I In the expanding region, we expect that gsi (t) remains close to the
evolution of the expander ge(t + si), for t ≥ 0.

Ricci flow from spaces with isolated conical singularities CaGiG, Anogeia, 26 May 2016 13 / 15



Estimating the flow away from the singular point

I Apply the pseudolocality theorem to the approximators
(M,gsi (t))t∈[0,Ti ] away from the red region, where (M,g0,si ) is
close to the cone (C(Sn−1),gc).

t

M

M, t=0

I By the Ricci flow equation, gsi (t) remains close to g(0) outside the
grey, ‘expanding region’ (uniformly as si → 0).

I In the expanding region, we expect that gsi (t) remains close to the
evolution of the expander ge(t + si), for t ≥ 0.

Ricci flow from spaces with isolated conical singularities CaGiG, Anogeia, 26 May 2016 13 / 15



Estimating the flow away from the singular point

I Apply the pseudolocality theorem to the approximators
(M,gsi (t))t∈[0,Ti ] away from the red region, where (M,g0,si ) is
close to the cone (C(Sn−1),gc).

t

M

M, t=0

I By the Ricci flow equation, gsi (t) remains close to g(0) outside the
grey, ‘expanding region’ (uniformly as si → 0).

I In the expanding region, we expect that gsi (t) remains close to the
evolution of the expander ge(t + si), for t ≥ 0.

Ricci flow from spaces with isolated conical singularities CaGiG, Anogeia, 26 May 2016 13 / 15



Estimating the flow in the expanding region

Localize a stability result of Deruelle–Lamm for the closely related
Ricci–DeTurck equation on expander (N,ge(t + 1)) with Rm > 0

∂

∂t
g(t) = −2 Ric(g(t)) + LW(g(t),ge(t+1))g(t).

Let r be the natural radial coordinate of N at infinity. Suppose

I g(0) is close to ge(1) in {r ≤ 2Λ}.
I g(t) is close to ge(t + 1) in an annular region
{r ∈ [

√
γt + Λ2,2

√
γt + Λ2]}.

Then g(t) remains close to ge(t + 1) in {r ≤ 2
√
γt + Λ2} for all t ≥ 0.

I Use the control obtained by the pseudolocality theorem to obtain
control in the annular region.

I Technical difficulty: the Ricci flow is related to the Ricci–DeTurck
flow via a family of diffeomorphisms which we need to control.
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THANK YOU!
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