Ricci flow from spaces with isolated conical singularities

Panagiotis Gianniotis University College London

joint with F. Schulze

CaGiG, Anogeia, 26 May 2016

Let M be a compact manifold, $\partial M = \emptyset$. A family $(g(t))_{t \in [0,T)}$ of Riemannian metrics on M is a Ricci flow (RF) if

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Ric}(g(t)).$$

Let M be a compact manifold, $\partial M = \emptyset$. A family $(g(t))_{t \in [0,T)}$ of Riemannian metrics on M is a Ricci flow (RF) if

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Ric}(g(t)).$$

▶ Given g_0 there exists $\varepsilon > 0$ and a unique smooth (RF) g(t), $t \in [0, \varepsilon]$, such that $g(0) = g_0$. (Hamilton)

Let M be a compact manifold, $\partial M = \emptyset$. A family $(g(t))_{t \in [0,T)}$ of Riemannian metrics on M is a Ricci flow (RF) if

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Ric}(g(t)).$$

- ▶ Given g_0 there exists $\varepsilon > 0$ and a unique smooth (RF) g(t), $t \in [0, \varepsilon]$, such that $g(0) = g_0$. (Hamilton)
- ▶ Analogue of the heat diffusion equation, $\frac{\partial}{\partial t}u = \Delta u$, for Riemannian metrics. In fact, in harmonic coordinates, i.e. $\Delta_{\sigma}x^{i} = 0$,

$$-2\operatorname{Ric}(g)_{ij}=\Delta_g g_{ij}+Q(g,\partial g)_{ij}.$$

Let M be a compact manifold, $\partial M = \emptyset$. A family $(g(t))_{t \in [0,T)}$ of Riemannian metrics on M is a Ricci flow (RF) if

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Ric}(g(t)).$$

- ▶ Given g_0 there exists $\varepsilon > 0$ and a unique smooth (RF) g(t), $t \in [0, \varepsilon]$, such that $g(0) = g_0$. (Hamilton)
- ▶ Analogue of the heat diffusion equation, $\frac{\partial}{\partial t}u = \Delta u$, for Riemannian metrics. In fact, in harmonic coordinates, i.e. $\Delta_{\sigma}x^{i} = 0$,

$$-2\operatorname{\mathsf{Ric}}(g)_{ij}=\Delta_g g_{ij}+Q(g,\partial g)_{ij}.$$

► Expectation: Ricci flow tries to find 'optimal' geometry on *M* and maximize amount of symmetry. Justified by examples.

▶ dim M = 2: As $t \to \infty$, the volume normalized Ricci flow converges to a constant positive, zero or negative curvature metric, depending on genus. (Hamilton, Chow)

- ▶ dim M = 2: As $t \to \infty$, the volume normalized Ricci flow converges to a constant positive, zero or negative curvature metric, depending on genus. (Hamilton, Chow)
- ▶ dim M=3 with Ric $(g_0)>0$, and dim M>3 with Rm $(g_0)>0$: The volume normalized flow converges to a constant positive curvature metric, as $t\to\infty$. (Hamilton, Böhm–Wilking)

- ▶ dim M = 2: As $t \to \infty$, the volume normalized Ricci flow converges to a constant positive, zero or negative curvature metric, depending on genus. (Hamilton, Chow)
- ▶ dim M=3 with Ric $(g_0)>0$, and dim M>3 with Rm $(g_0)>0$: The volume normalized flow converges to a constant positive curvature metric, as $t\to\infty$. (Hamilton, Böhm–Wilking)
- dim M = 3, Ricci flow with surgery (Hamilton, Perelman): Ricci flow decomposes manifold into smaller pieces and converges to a special geometric structure (locally homogeneous) in each of them.

- ▶ dim M = 2: As $t \to \infty$, the volume normalized Ricci flow converges to a constant positive, zero or negative curvature metric, depending on genus. (Hamilton, Chow)
- ▶ dim M=3 with Ric $(g_0)>0$, and dim M>3 with Rm $(g_0)>0$: The volume normalized flow converges to a constant positive curvature metric, as $t\to\infty$. (Hamilton, Böhm–Wilking)
- ▶ dim M = 3, Ricci flow with surgery (Hamilton, Perelman): Ricci flow decomposes manifold into smaller pieces and converges to a special geometric structure (locally homogeneous) in each of them.
- ▶ But need to deal with singularities.

Singularities

Ricci flow is non-linear and existence of 'optimal' geometry depends on the topology of M. The flow typically develops singularities: smooth flow exists on a maximal time interval [0, T), $T < \infty$ and

$$\lim_{t\to T}\max_{M}|\operatorname{Rm}(g(t))|_{g(t)}=\infty.$$

Singularities

Ricci flow is non-linear and existence of 'optimal' geometry depends on the topology of M. The flow typically develops singularities: smooth flow exists on a maximal time interval [0, T), $T < \infty$ and

$$\lim_{t \to T} \max_{M} |\operatorname{Rm}(g(t))|_{g(t)} = \infty.$$

▶ Shrinking sphere: $(S^n, g(t)), g(t) = (1 - 2(n - 1)t)g_{round},$ g_{round} metric of sphere of radius 1. Flow exists for finite time T = 1/2(n - 1).

Singularities

Ricci flow is non-linear and existence of 'optimal' geometry depends on the topology of M. The flow typically develops singularities: smooth flow exists on a maximal time interval [0, T), $T < \infty$ and

$$\lim_{t \to T} \max_{M} |\operatorname{Rm}(g(t))|_{g(t)} = \infty.$$

- ▶ Shrinking sphere: $(S^n, g(t)), g(t) = (1 2(n 1)t)g_{round},$ g_{round} metric of sphere of radius 1. Flow exists for finite time T = 1/2(n 1).
- ▶ Neck-pinch singularity on S^{n+1} , $n \ge 2$. (Angenent–Knopf):

Find way to flow after a singularity, possibly with change in topology:

Find way to flow after a singularity, possibly with change in topology:

▶ Ricci flow with surgery: Hamilton, Perelman in dim M = 3, and Hamilton, Chen–Zhu in dim M = 4, under curvature assumptions.

Find way to flow after a singularity, possibly with change in topology:

▶ Ricci flow with surgery: Hamilton, Perelman in dim M = 3, and Hamilton, Chen–Zhu in dim M = 4, under curvature assumptions.

▶ In general, much more complex behaviour.

Find way to flow after a singularity, possibly with change in topology:

▶ Ricci flow with surgery: Hamilton, Perelman in dim M = 3, and Hamilton, Chen–Zhu in dim M = 4, under curvature assumptions.

- ▶ In general, much more complex behaviour.
- ► Feldman–Ilmanen–Knopf: Example of non-compact smooth Ricci flow that converges to a cone, and then changes topology, becomes smooth and continues after the singularity.

Theorem (Naber, Enders-Müller-Topping)

Let $(g(t))_{t\in[-T,0)}$ be a Type I Ricci flow and $p\in M$ be a singular point. Then for any $\lambda_k \searrow 0$ the dilated flows $(M, \lambda_k^{-1}g(\lambda_k t), p)_{t\in[-\lambda_k^{-1}T,0)}$ converge, as $k\to\infty$, to a non-flat flow $(N,h(t))_{t\in(-\infty,0)}$ which has special structure: gradient shrinking Ricci soliton.

Theorem (Naber, Enders-Müller-Topping)

Let $(g(t))_{t\in[-T,0)}$ be a Type I Ricci flow and $p\in M$ be a singular point. Then for any $\lambda_k \searrow 0$ the dilated flows $(M,\lambda_k^{-1}g(\lambda_k t),p)_{t\in[-\lambda_k^{-1}T,0)}$ converge, as $k\to\infty$, to a non-flat flow $(N,h(t))_{t\in(-\infty,0)}$ which has special structure: gradient shrinking Ricci soliton.

Theorem (Naber, Enders-Müller-Topping)

Let $(g(t))_{t\in[-T,0)}$ be a Type I Ricci flow and $p\in M$ be a singular point. Then for any $\lambda_k\searrow 0$ the dilated flows $(M,\lambda_k^{-1}g(\lambda_k t),p)_{t\in[-\lambda_k^{-1}T,0)}$ converge, as $k\to\infty$, to a non-flat flow $(N,h(t))_{t\in(-\infty,0)}$ which has special structure: gradient shrinking Ricci soliton.

▶ A gradient shrinking ricci soliton is a Ricci flow on N of the form $h(t) = -t\varphi_t^*\mathbf{g}$, $t \in (-\infty, 0)$, φ_t family of diffeomorphisms, $\varphi_{-1} = id_N$.

Theorem (Naber, Enders-Müller-Topping)

Let $(g(t))_{t\in[-T,0)}$ be a Type I Ricci flow and $p\in M$ be a singular point. Then for any $\lambda_k\searrow 0$ the dilated flows $(M,\lambda_k^{-1}g(\lambda_k t),p)_{t\in[-\lambda_k^{-1}T,0)}$ converge, as $k\to\infty$, to a non-flat flow $(N,h(t))_{t\in(-\infty,0)}$ which has special structure: gradient shrinking Ricci soliton.

- ▶ A gradient shrinking ricci soliton is a Ricci flow on N of the form $h(t) = -t\varphi_t^*\mathbf{g}$, $t \in (-\infty, 0)$, φ_t family of diffeomorphisms, $\varphi_{-1} = i\mathbf{d}_N$.
- ► Think of a GSRS as a fixed point of the flow, modulo diffeomorphisms and scalings.

Conical structure of singularities

▶ If a singular Ricci flow $(M, g(t))_{t \in [0,T)}$ converges to a singular space (X, d_X) as $t \to T$, we would like to be able to restart the flow, with (X, d_X) as initial data.

Conical structure of singularities

- ▶ If a singular Ricci flow $(M, g(t))_{t \in [0, T)}$ converges to a singular space (X, d_X) as $t \to T$, we would like to be able to restart the flow, with (X, d_X) as initial data.
- ► The structure of X is far from being understood.

Conical structure of singularities

- ▶ If a singular Ricci flow $(M, g(t))_{t \in [0, T)}$ converges to a singular space (X, d_X) as $t \to T$, we would like to be able to restart the flow, with (X, d_X) as initial data.
- ▶ The structure of *X* is far from being understood.
- Evidence that its singularities have conical structure.

Theorem (Munteanu-Wang)

Let (M^n, \mathbf{g}, f) be a non-compact GSRS with $\mathrm{Ric} \to 0$ at infinity. Then it is asymptotic to the cone $(C(X), g_c)$ over a closed (n-1)-dimensional Riemannian manifold (X, g_X) , namely $C(X) = (0, +\infty) \times X$ and $g_c = dr^2 + r^2 g_X$.

▶ Given (M, g_0) smooth, away from a finite number of conical singularities, does there exist a smooth Ricci flow coming out of (M, g_0) ?

- ▶ Given (M, g_0) smooth, away from a finite number of conical singularities, does there exist a smooth Ricci flow coming out of (M, g_0) ?
- ▶ The case dim M = 3 follows from work of M. Simon.

- ▶ Given (M, g_0) smooth, away from a finite number of conical singularities, does there exist a smooth Ricci flow coming out of (M, g_0) ?
- ▶ The case dim M = 3 follows from work of M. Simon.
- Analogous question for: network flow (Ilmanen–Neves–Schulze) and Lagrangian mean curvature flow. (Begley–Moore)

- ▶ Given (M, g_0) smooth, away from a finite number of conical singularities, does there exist a smooth Ricci flow coming out of (M, g_0) ?
- ▶ The case dim M = 3 follows from work of M. Simon.
- ► Analogous question for: network flow (Ilmanen–Neves–Schulze) and Lagrangian mean curvature flow. (Begley–Moore)
- Asymptotically conical expanding Ricci solitons: special solutions of Ricci flow coming out of cones.

▶ Expanding gradient Ricci solitons (EGRS), (N, \mathbf{g}, f) such that $Ric(\mathbf{g}) + Hess f = -\frac{\mathbf{g}}{2}$.

- Expanding gradient Ricci solitons (EGRS), (N, \mathbf{g}, f) such that $Ric(\mathbf{g}) + Hess f = -\frac{\mathbf{g}}{2}$.
- ▶ Ricci flow $g_e(t) = t\varphi_t^* \mathbf{g}$, $t \in (0, +\infty)$, where φ_t generated by $-\frac{1}{t}\nabla f$ and $\varphi_1 = id_N$.

- ▶ Expanding gradient Ricci solitons (EGRS), (N, \mathbf{g}, f) such that $Ric(\mathbf{g}) + Hess f = -\frac{\mathbf{g}}{2}$.
- ▶ Ricci flow $g_e(t) = t\varphi_t^* \mathbf{g}$, $t \in (0, +\infty)$, where φ_t generated by $-\frac{1}{t} \nabla f$ and $\varphi_1 = id_N$.

- ► Expanding gradient Ricci solitons (EGRS), (N, \mathbf{g}, f) such that $Ric(\mathbf{g}) + Hess f = -\frac{\mathbf{g}}{2}$.
- ▶ Ricci flow $g_e(t) = t\varphi_t^* \mathbf{g}$, $t \in (0, +\infty)$, where φ_t generated by $-\frac{1}{t}\nabla f$ and $\varphi_1 = id_N$.

Asymptotically conical expanders:

▶ Bryant: rotationally symmetric on \mathbb{R}^n , asymptotic to $C(S^{n-1})$ with $(S^{n-1}, cg_{round}), c \in (0, 1)$.

- ▶ Expanding gradient Ricci solitons (EGRS), (N, \mathbf{g}, f) such that $Ric(\mathbf{g}) + Hess f = -\frac{\mathbf{g}}{2}$.
- ▶ Ricci flow $g_e(t) = t\varphi_t^* \mathbf{g}$, $t \in (0, +\infty)$, where φ_t generated by $-\frac{1}{t}\nabla f$ and $\varphi_1 = id_N$.

- ▶ Bryant: rotationally symmetric on \mathbb{R}^n , asymptotic to $C(S^{n-1})$ with $(S^{n-1}, cg_{round}), c \in (0, 1)$.
- ► Schulze–Simon: Expanders with Rm > 0 coming out of cones.

- ► Expanding gradient Ricci solitons (EGRS), (N, \mathbf{g}, f) such that $Ric(\mathbf{g}) + Hess f = -\frac{\mathbf{g}}{2}$.
- ▶ Ricci flow $g_e(t) = t\varphi_t^* \mathbf{g}$, $t \in (0, +\infty)$, where φ_t generated by $-\frac{1}{t}\nabla f$ and $\varphi_1 = id_N$.

- ▶ Bryant: rotationally symmetric on \mathbb{R}^n , asymptotic to $C(S^{n-1})$ with $(S^{n-1}, cg_{round}), c \in (0, 1)$.
- Schulze–Simon: Expanders with Rm > 0 coming out of cones.
- ▶ Deruelle: $Rm \ge 0$, asymptotic to cones $C(S^{n-1})$ with $Rm(g_{S^{n-1}}) \ge 1$.

- ► Expanding gradient Ricci solitons (EGRS), (N, \mathbf{g}, f) such that $Ric(\mathbf{g}) + Hess f = -\frac{\mathbf{g}}{2}$.
- ▶ Ricci flow $g_e(t) = t\varphi_t^* \mathbf{g}$, $t \in (0, +\infty)$, where φ_t generated by $-\frac{1}{t}\nabla f$ and $\varphi_1 = id_N$.

- ▶ Bryant: rotationally symmetric on \mathbb{R}^n , asymptotic to $C(S^{n-1})$ with $(S^{n-1}, cg_{round}), c \in (0, 1)$.
- Schulze–Simon: Expanders with Rm > 0 coming out of cones.
- ▶ Deruelle: $Rm \ge 0$, asymptotic to cones $C(S^{n-1})$ with $Rm(g_{S^{n-1}}) \ge 1$.
- ▶ H-D. Cao, Feldman–Ilmanen–Knopf: asymptotic to $\mathbb{C}^n/\mathbb{Z}_k$.

Main result

Theorem (G-Schulze)

Let (M, g_0) be a Riemannian manifold, smooth away from $q_0 \in M$, and a conical singularity modeled on $(C(S^{n-1}), g_c = dr^2 + r^2g_{S^{n-1}})$ at q_0 .

Main result

Theorem (G-Schulze)

Let (M, g_0) be a Riemannian manifold, smooth away from $q_0 \in M$, and a conical singularity modeled on $(C(S^{n-1}), g_c = dr^2 + r^2g_{S^{n-1}})$ at q_0 . Suppose that $Rm(g_c) > 0$. Then there exists a smooth Ricci flow $(g(t))_{t \in (0,T]}$ on M which satisfies

Theorem (G-Schulze)

Let (M, g_0) be a Riemannian manifold, smooth away from $q_0 \in M$, and a conical singularity modeled on $(C(S^{n-1}), g_c = dr^2 + r^2g_{S^{n-1}})$ at q_0 . Suppose that $Rm(g_c) > 0$. Then there exists a smooth Ricci flow $(g(t))_{t \in (0,T]}$ on M which satisfies

1. $\max_{M} |\operatorname{Rm}(g(t))|_{g(t)} \leq C/t$.

Theorem (G-Schulze)

Let (M, g_0) be a Riemannian manifold, smooth away from $q_0 \in M$, and a conical singularity modeled on $(C(S^{n-1}), g_c = dr^2 + r^2g_{S^{n-1}})$ at q_0 . Suppose that $Rm(g_c) > 0$. Then there exists a smooth Ricci flow $(g(t))_{t \in (0,T]}$ on M which satisfies

- **1.** $\max_{M} |\operatorname{Rm}(g(t))|_{g(t)} \leq C/t$.
- **2.** (M, g(t)) converges to (M, g_0) in the sense of metric spaces (in the Gromov-Hausdorff topology), as $t \to 0$.

Theorem (G-Schulze)

Let (M, g_0) be a Riemannian manifold, smooth away from $q_0 \in M$, and a conical singularity modeled on $(C(S^{n-1}), g_c = dr^2 + r^2g_{S^{n-1}})$ at q_0 . Suppose that $Rm(g_c) > 0$. Then there exists a smooth Ricci flow $(g(t))_{t \in (0,T]}$ on M which satisfies

- **1.** $\max_{M} |\operatorname{Rm}(g(t))|_{g(t)} \leq C/t$.
- **2.** (M, g(t)) converges to (M, g_0) in the sense of metric spaces (in the Gromov-Hausdorff topology), as $t \to 0$.
- **3.** There is $\Psi: M \setminus \{q_0\} \to M$, diffeomorphism onto its image, such that $\Psi^*g(t) \to g_0$ smoothly and uniformly away from q_0 , as $t \to 0$.

Theorem (G-Schulze)

Let (M,g_0) be a Riemannian manifold, smooth away from $q_0 \in M$, and a conical singularity modeled on $(C(S^{n-1}),g_c=dr^2+r^2g_{S^{n-1}})$ at q_0 . Suppose that $\text{Rm}(g_c)>0$. Then there exists a smooth Ricci flow $(g(t))_{t\in(0,T]}$ on M which satisfies

- **1.** $\max_{M} |\operatorname{Rm}(g(t))|_{g(t)} \leq C/t$.
- **2.** (M, g(t)) converges to (M, g_0) in the sense of metric spaces (in the Gromov-Hausdorff topology), as $t \to 0$.
- **3.** There is $\Psi: M \setminus \{q_0\} \to M$, diffeomorphism onto its image, such that $\Psi^*g(t) \to g_0$ smoothly and uniformly away from q_0 , as $t \to 0$.
- **4.** For any $\lambda_k \searrow 0$ and $q \notin \text{Im} \Psi$, the sequence $(M, \lambda_k^{-1} g(\lambda_k t), q)_{t \in (0, \lambda_k^{-1} T]}$ converges smoothly to the flow generated by the unique expander asymptotic to the cone $(C(S^{n-1}), g_c)$.

▶ By a result of Deruelle, given $C(S^{n-1})$ with $Rm(g_c) > 0$, there is a unique EGRS (N, \mathbf{g}, f) asymptotic to $C(S^{n-1})$ at infinity, $N \equiv \mathbb{R}^n$, and $Rm(\mathbf{g}) > 0$.

- ▶ By a result of Deruelle, given $C(S^{n-1})$ with $Rm(g_c) > 0$, there is a unique EGRS (N, \mathbf{g}, f) asymptotic to $C(S^{n-1})$ at infinity, $N \equiv \mathbb{R}^n$, and $Rm(\mathbf{g}) > 0$.
- ▶ Desingularize (M, g_0) by gluing large pieces of (N, \mathbf{g}) at small scales $s_i \searrow 0$ to obtain (M, g_{0,s_i}) .

- ▶ By a result of Deruelle, given $C(S^{n-1})$ with $Rm(g_c) > 0$, there is a unique EGRS (N, \mathbf{g}, f) asymptotic to $C(S^{n-1})$ at infinity, $N \equiv \mathbb{R}^n$, and $Rm(\mathbf{g}) > 0$.
- ▶ Desingularize (M, g_0) by gluing large pieces of (N, \mathbf{g}) at small scales $s_i \searrow 0$ to obtain (M, g_{0,s_i}) .

► Consider the associated sequence of Ricci flows $(M, g_{s_i}(t))_{t \in (0, T_i]}$ with $g_{s_i}(0) = g_{0,s_i}$ and obtain uniform estimates.

- ▶ By a result of Deruelle, given $C(S^{n-1})$ with $Rm(g_c) > 0$, there is a unique EGRS (N, \mathbf{g}, f) asymptotic to $C(S^{n-1})$ at infinity, $N \equiv \mathbb{R}^n$, and $Rm(\mathbf{g}) > 0$.
- ▶ Desingularize (M, g_0) by gluing large pieces of (N, \mathbf{g}) at small scales $s_i \searrow 0$ to obtain (M, g_{0,s_i}) .

- ► Consider the associated sequence of Ricci flows $(M, g_{s_i}(t))_{t \in (0, T_i]}$ with $g_{s_i}(0) = g_{0,s_i}$ and obtain uniform estimates.
- ▶ Since $|\operatorname{Rm}(g_{0,s_i})| \sim s_i^{-1}$ standard theory only gives $T_i \sim s_i$.

- ▶ By a result of Deruelle, given $C(S^{n-1})$ with $Rm(g_c) > 0$, there is a unique EGRS (N, \mathbf{g}, f) asymptotic to $C(S^{n-1})$ at infinity, $N \equiv \mathbb{R}^n$, and $Rm(\mathbf{g}) > 0$.
- ▶ Desingularize (M, g_0) by gluing large pieces of (N, \mathbf{g}) at small scales $s_i \searrow 0$ to obtain (M, g_{0,s_i}) .

- ► Consider the associated sequence of Ricci flows $(M, g_{s_i}(t))_{t \in (0, T_i]}$ with $g_{s_i}(0) = g_{0,s_i}$ and obtain uniform estimates.
- ▶ Since $|\operatorname{Rm}(g_{0,s_i})| \sim s_i^{-1}$ standard theory only gives $T_i \sim s_i$.
- ▶ Pass to a limit flow $(g(t))_{t \in (0,T]}$.

Theorem

There exists $\varepsilon(n) > 0$ such that if $(M^n, g(t))_{t \in [0, (\varepsilon r)^2]}$ is a complete Ricci flow and

$$\operatorname{vol}_{g(0)}(B_{g(0)}(x,r)) \geq (1-\varepsilon)\omega_n r^n, \ |\operatorname{Rm}(g(0))|_{g(0)} \leq r^{-2}, \quad \text{in } B_{g(0)}(x,r),$$

then $|\operatorname{Rm}(g(t))|_{g(t)} \leq (\varepsilon r)^{-2}$ in $B_{g(0)}(x, \varepsilon r)$ and $t \in [0, (\varepsilon r)^2]$.

Theorem

There exists $\varepsilon(n) > 0$ such that if $(M^n, g(t))_{t \in [0, (\varepsilon r)^2]}$ is a complete Ricci flow and

$$\operatorname{vol}_{g(0)}(B_{g(0)}(x,r)) \geq (1-\varepsilon)\omega_n r^n, \ |\operatorname{Rm}(g(0))|_{g(0)} \leq r^{-2}, \quad \text{in } B_{g(0)}(x,r),$$

then
$$|\operatorname{Rm}(g(t))|_{g(t)} \leq (\varepsilon r)^{-2}$$
 in $B_{g(0)}(x, \varepsilon r)$ and $t \in [0, (\varepsilon r)^2]$.

▶ Obtain control in regions with 'almost Euclidean' volume.

Theorem

There exists $\varepsilon(n) > 0$ such that if $(M^n, g(t))_{t \in [0, (\varepsilon r)^2]}$ is a complete Ricci flow and

$$\operatorname{vol}_{g(0)}(B_{g(0)}(x,r)) \geq (1-\varepsilon)\omega_n r^n, \ |\operatorname{Rm}(g(0))|_{g(0)} \leq r^{-2}, \quad \text{in } B_{g(0)}(x,r),$$

then
$$|\operatorname{Rm}(g(t))|_{g(t)} \leq (\varepsilon r)^{-2}$$
 in $B_{g(0)}(x, \varepsilon r)$ and $t \in [0, (\varepsilon r)^2]$.

- ▶ Obtain control in regions with 'almost Euclidean' volume.
- ► For some time, extreme high curvature outside $B_{g(0)}(x, r)$ does not influence the flow in $B_{g(0)}(x, \varepsilon r)$ significantly.

Theorem

There exists $\varepsilon(n) > 0$ such that if $(M^n, g(t))_{t \in [0, (\varepsilon r)^2]}$ is a complete Ricci flow and

$$\operatorname{vol}_{g(0)}(B_{g(0)}(x,r)) \geq (1-\varepsilon)\omega_n r^n, \ |\operatorname{Rm}(g(0))|_{g(0)} \leq r^{-2}, \quad \text{in } B_{g(0)}(x,r),$$

then
$$|\operatorname{Rm}(g(t))|_{g(t)} \leq (\varepsilon r)^{-2}$$
 in $B_{g(0)}(x, \varepsilon r)$ and $t \in [0, (\varepsilon r)^2]$.

- ▶ Obtain control in regions with 'almost Euclidean' volume.
- ► For some time, extreme high curvature outside $B_{g(0)}(x, r)$ does not influence the flow in $B_{g(0)}(x, \varepsilon r)$ significantly.
- ► That is very different from the behaviour of solutions of the heat equation!

Estimating the flow away from the singular point

▶ Apply the pseudolocality theorem to the approximators $(M, g_{s_i}(t))_{t \in [0, T_i]}$ away from the red region, where (M, g_{0,s_i}) is close to the cone $(C(S^{n-1}), g_c)$.

Estimating the flow away from the singular point

▶ Apply the pseudolocality theorem to the approximators $(M, g_{s_i}(t))_{t \in [0, T_i]}$ away from the red region, where (M, g_{0,s_i}) is close to the cone $(C(S^{n-1}), g_c)$.

▶ By the Ricci flow equation, $g_{s_i}(t)$ remains close to g(0) outside the grey, 'expanding region' (uniformly as $s_i \to 0$).

Estimating the flow away from the singular point

▶ Apply the pseudolocality theorem to the approximators $(M, g_{s_i}(t))_{t \in [0, T_i]}$ away from the red region, where (M, g_{0,s_i}) is close to the cone $(C(S^{n-1}), g_c)$.

- ▶ By the Ricci flow equation, $g_{s_i}(t)$ remains close to g(0) outside the grey, 'expanding region' (uniformly as $s_i \to 0$).
- ▶ In the expanding region, we expect that $g_{s_i}(t)$ remains close to the evolution of the expander $g_e(t + s_i)$, for $t \ge 0$.

Localize a stability result of Deruelle–Lamm for the closely related Ricci–DeTurck equation on expander $(N, g_e(t+1))$ with Rm > 0

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Ric}}(g(t)) + \mathcal{L}_{\mathcal{W}(g(t),g_e(t+1))}g(t).$$

Localize a stability result of Deruelle–Lamm for the closely related Ricci–DeTurck equation on expander $(N, g_e(t+1))$ with Rm > 0

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Ric}}(g(t)) + \mathcal{L}_{\mathcal{W}(g(t),g_{e}(t+1))}g(t).$$

Let **r** be the natural radial coordinate of *N* at infinity. Suppose

Localize a stability result of Deruelle–Lamm for the closely related Ricci–DeTurck equation on expander $(N, g_e(t+1))$ with Rm > 0

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Ric}}(g(t)) + \mathcal{L}_{\mathcal{W}(g(t),g_{e}(t+1))}g(t).$$

Let **r** be the natural radial coordinate of *N* at infinity. Suppose

• g(0) is close to $g_e(1)$ in $\{\mathbf{r} \leq 2\Lambda\}$.

Localize a stability result of Deruelle–Lamm for the closely related Ricci–DeTurck equation on expander $(N, g_e(t+1))$ with Rm > 0

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Ric}}(g(t)) + \mathcal{L}_{\mathcal{W}(g(t),g_e(t+1))}g(t).$$

Let \mathbf{r} be the natural radial coordinate of N at infinity. Suppose

- ▶ g(0) is close to $g_e(1)$ in $\{\mathbf{r} \leq 2\Lambda\}$.
- ▶ g(t) is close to $g_e(t+1)$ in an annular region $\{\mathbf{r} \in [\sqrt{\gamma t + \Lambda^2}, 2\sqrt{\gamma t + \Lambda^2}]\}.$

Localize a stability result of Deruelle–Lamm for the closely related Ricci–DeTurck equation on expander $(N, g_e(t+1))$ with Rm > 0

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Ric}}(g(t)) + \mathcal{L}_{\mathcal{W}(g(t),g_e(t+1))}g(t).$$

Let \mathbf{r} be the natural radial coordinate of N at infinity. Suppose

- ▶ g(0) is close to $g_e(1)$ in $\{\mathbf{r} \leq 2\Lambda\}$.
- ▶ g(t) is close to $g_e(t+1)$ in an annular region $\{\mathbf{r} \in [\sqrt{\gamma t + \Lambda^2}, 2\sqrt{\gamma t + \Lambda^2}]\}.$

Then g(t) remains close to $g_e(t+1)$ in $\{\mathbf{r} \leq 2\sqrt{\gamma t + \Lambda^2}\}$ for all $t \geq 0$.

Localize a stability result of Deruelle–Lamm for the closely related Ricci–DeTurck equation on expander $(N, g_e(t+1))$ with Rm > 0

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Ric}}(g(t)) + \mathcal{L}_{\mathcal{W}(g(t),g_e(t+1))}g(t).$$

Let \mathbf{r} be the natural radial coordinate of N at infinity. Suppose

- g(0) is close to $g_e(1)$ in $\{\mathbf{r} \leq 2\Lambda\}$.
- ▶ g(t) is close to $g_e(t+1)$ in an annular region $\{\mathbf{r} \in [\sqrt{\gamma t + \Lambda^2}, 2\sqrt{\gamma t + \Lambda^2}]\}.$

Then g(t) remains close to $g_e(t+1)$ in $\{\mathbf{r} \leq 2\sqrt{\gamma t + \Lambda^2}\}$ for all $t \geq 0$.

▶ Use the control obtained by the pseudolocality theorem to obtain control in the annular region.

Localize a stability result of Deruelle–Lamm for the closely related Ricci–DeTurck equation on expander $(N, g_e(t+1))$ with Rm > 0

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Ric}}(g(t)) + \mathcal{L}_{\mathcal{W}(g(t),g_e(t+1))}g(t).$$

Let \mathbf{r} be the natural radial coordinate of N at infinity. Suppose

- ▶ g(0) is close to $g_e(1)$ in $\{\mathbf{r} \leq 2\Lambda\}$.
- ▶ g(t) is close to $g_e(t+1)$ in an annular region $\{\mathbf{r} \in [\sqrt{\gamma t + \Lambda^2}, 2\sqrt{\gamma t + \Lambda^2}]\}.$

Then g(t) remains close to $g_e(t+1)$ in $\{\mathbf{r} \leq 2\sqrt{\gamma t + \Lambda^2}\}$ for all $t \geq 0$.

- ▶ Use the control obtained by the pseudolocality theorem to obtain control in the annular region.
- ► Technical difficulty: the Ricci flow is related to the Ricci—DeTurck flow via a family of diffeomorphisms which we need to control.

THANK YOU!