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Motivation and Background

MAIN MOTIVATION The g-Conjecture, which is a conjecture
about the combinatorics of a (finite) simplicial complex D
triangulating a sphere Sn.

In more detail, assume D is a finite simplicial complex. We define
fi(D) to be the number of i-faces of D. (A 0-face is also called a
vertex, a 1-face is also called an edge.)

Assume the dimension of D is d − 1. We define the f-vector f (D)
of D by

f (D) = (f0(D), f1(D), . . . , fd−1(D))
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EXAMPLE: If D′ is the solid triangle, we have

f (D′) = (3, 3, 1),

since it has 3 vertices, 3 edges and one 2-face.

QUESTION Assume n ≥ 1. Denote by An the set of all simplicial
complexes D triangulating Sn. Describe the set

f (An) = {f (D) : D ∈ An}.

EXAMPLE: For n = 1 we only have m-gons with m ≥ 3, hence

f (A1) = {(m,m) : m ≥ 3}.
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REMARK: For D ∈ An a linear relation is given by the topological
Euler characteristic

n∑
i=0

(−1)i fi (D) = χ(Sn) = 1 + (−1)n

Another relation is f0(D) ≥ n + 2.
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g-CONDITIONS: A certain set of equalities and inequalities
between the fi , obtained in a different context by Macaulay (1920s)
when studying the growth of Hilbert functions of graded rings.

ORIGINAL g-CONJECTURE (McMullen, 1971) A finite sequence

f = (f0, . . . , fn−1) ∈ Nn

is the f -vector of the boundary complex of a convex simplicial
polytope P of dimension n if and only f satisfies the g-conditions.

REMARK: A polytope is called simplicial if all proper faces are
simplices. For example the cube and the dodecahedron are not
simplicial polytopes. The tetrahedron, octahedron and icosahedron
are simplicial.
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The original g-Conjecture is true:

Billera and Lee (1981) showed (explicit construction) that if a
finite sequence f satisfies the g-conditions, then there exists a
convex simplicial polytope P such that the f -vector of the
boundary complex of P is equal to f .

Stanley (1981) using the Hard Lefschetz theorem for the singular
cohomology of a projective toric variety associated to P showed
the other direction: The f -vector of the boundary complex of a
convex simplicial polytope P satisfies the g-conditions.
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REMARK. For high n there are many elements of An that can not
be obtained as boundary complex of a convex simplicial polytope.

(CURRENT) g-CONJECTURE. Assume D ∈ An. Then the
f -vector f (D) of D satisfies the g-conditions.

The conjecture is open for high n.
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Stanley-Reisner Ring

Assume k is an infinite field and D is a simplicial complex with
vertex set {1, . . . ,m} and dimension d − 1. The Stanley–Reisner
ideal ID ⊂ k[x1, . . . , xm] of D is the ideal

ID = (xi1xi2 · · · xip : i1 < i2 · · · < ip and {i1, i2, . . . , ip} /∈ D).

It is a square-free monomial ideal.

The Stanley–Reisner ring of D is

k[D] = k[x1, . . . , xm]/ID.

We put deg xi = 1 for all i .
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EXAMPLES
If D is the 3-gon then

k[D] = k[x1, x2, x3]/(x1x2x3)

Assume D is the 4-gon (i.e., boundary of the square) with
diagonals {1, 3} and {2, 4}. We have

k[D] = k[x1, . . . , x4]/(x1x3, x2x4).
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REMARKS
We have dim k[D] = dim D + 1 = d .

From the Hilbert Series of k[D] we can recover the f -vector of D:
Set

HD(t) =
∞∑

t=0
dimk(k[D]i )t i ∈ k[[t]]

i.e., considered as a formal power series. Then (1− t)dHD(t) is a
polynomial in t, and the information of its coefficients is equivalent
to the information f (D).

Moreover, by work of Hochster, Stanley and Reisner, good
topological properties of the topological space |D| are related to
good algebraic properties of the ring k[D]. For example, if D ∈ An
then k[D] is a Gorenstein ring.
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Weak Lefschetz Property

DEFINITION Assume dim k[D] = d . We say that k[D] has the
Weak Lefschetz Property (WLP) if for d + 1 (Zariski) general
linear elements f1, . . . , fd+1 and for all i we have that

dimk(Bi ) = max{dimk Ai − dimkAi−1, 0}

where A = k[D]/(f1, . . . , fd ) is a general Artinian reduction of k[D]
and B = A/(fd+1).

REMARK Assume D ∈ An. It is well-known that k[D] WLP
implies that the f -vector f (D) of D satisfies the g-conditions.

QUESTION Assume D ∈ An. Is it true that k[D] WLP?
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Stellar Subdivisions
Assume D is a simplicial complex and σ is a face of D. Then there
is a new simplicial complex Dσ called the stellar subdivision of D
with respect to σ.
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EXAMPLE: If D is the m-gon and σ is a 1-face of D, then Dσ is
the polygon with m + 1 vertices.

MAIN THEOREM ( Boehm - P. ) Assume D ∈ An and σ is a face
of D with 2 dimσ > dim D + 1. Then k[D] is WLP if and only if
k[Dσ] is WLP.

QUESTION Is the Main Theorem true without any restriction on
dimσ? If so, then it follows that: If D is a PL-sphere then the
f -vector f (D) of D satisfies the g-conditions.
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Kustin–Miller unprojection

Kustin–Miller unprojection (Kustin and Miller (1985), Reid and P.
(2000)) is a method for constructing and analyzing complicated
Gorenstein rings in terms of simpler ones. In general, unprojection
theory is the algebraic counterpart of certain constructions in
birational geometry.
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Assume R is a positively graded Gorenstein ring and I ⊂ R is a
homogeneous ideal such that dim R/I = dim R − 1, R/I is
Gorenstein and I is not principle. Then standard facts about
Gorenstein rings give that there exists a short exact sequence

0→ R → HomR(I,R)→ R/I → 0

of R-modules. Hence, there exists an R-module homomorphism
φ : I → R such that φ together with the inclusion i generate
HomR(I,R) as R-module.
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DEFINITION The Kustin–Miller unprojection ring S of the pair
I ⊂ R is the ring

S = R[T ]/(Tu − φ(u) : u ∈ I)

where T is a new variable. In a certain sense S is the ring
corresponding to the ”graph” of φ : I → R.
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EXAMPLE: Assume k field, A,B are reasonably general
homogenous polynomials in the polynomial ring
Q = k[x , y , z1, z2, . . . , zp],

R = Q/(Ax − By), I = (x , y) ⊂ R

Then I is a codimension 1 ideal of R that is not principle.
Moreover R and R/I are complete intersections, hence Gorenstein.
We can choose the φ : I → R such that

φ(x) = B, φ(y) = A

(Since x , y generate the ideal I, this specifies φ uniquely.)
The map φ is ”the multiplication” by B/x = A/y ∈ Q(R), where
Q(R) denotes the total quotient ring of R. We have

S = k[x , y , z1, z2, . . . , zp,T ]/(Ax − By ,Tx − B,Ty − A)
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REMARK S is against Gorenstein (Kustin and Miller, Reid and P.).
In general, S is more complicated than both R and R/I. For
example, if R is complete intersection codimension 2 and R/I is
complete intersection codimension 3 then typically S is not a
complete intersection, but a 5× 5 Pfaffian.
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QUESTION: Assume σ is a face of the simplicial complex D. It is
easy to write down generators and relations for k[Dσ]. But how are
k[D] and k[Dσ] related in a structural way?

ANSWER (Boehm-P.) If D ∈ An (or more generally D is
Gorenstein*) then there is a general way (a kind of tautological
construction) to pass from k[D] to k[Dσ] via a Kustin–Miller
unprojection!
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IN MORE DETAIL. Assume the vertex set of D is {1, 2, . . . ,m}.
Without loss of generality assume σ = {1, 2, . . . , q}. Consider the
Stanley–Reisner ring

k[D] = k[x1, . . . , xm]/ID

let z be a new variable, and set R = k[D][z ] and xσ =
q∏

i=1
xi ∈ R.

Define
Jσ = (0R : xσ) ⊂ R

that is,
Jσ = {f ∈ R : fxσ = 0}.

Also set
I = (Jσ, z) ⊂ R.
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THEOREM (Boehm-P., 2007) Assume D ∈ An (or more generally
that D is Gorenstein*) . We have that I is a codimension 1 ideal of
R. Denote by S the Kustin–Miller unprojection of the pair I ⊂ R.
Then z is a regular element of S (i.e., the multiplication by z map
S → S is injective), and we have a (natural) isomorphism

S/(z)→ k[Dσ]
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EXAMPLE: Assume D is the (boundary of) 3-gon with vertex set
{1, 2, 3} and we do a stellar subdivision on the 1-face σ = {1, 2} of
D to get the Dσ, which is the 4-gon. Denote by T (instead of x4)
the variable corresponding to the new vertex 4. We have

k[D] = k[x1, . . . , x3]/(x1x2x3),

k[Dσ] = k[x1, . . . , x3,T ]/(x1x2,Tx3)

and
S = k[x1, . . . , x3, z ,T ]/(Tz − x1x2,Tx3).
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