Ends of nonpositively curved manifolds

Grigori Avramidi

May 25, 2016

Non-compact hyperbolic surfaces

Hyperbolic manifolds

M complete, Riemannian, $vol < \infty$, curvature K = -1.

Hyperbolic manifolds

M complete, Riemannian, $vol < \infty$, curvature K = -1. $inj(x) = \max$ radius of embedded ball centered at x.

Pinched negative curvature $-1 < K < -\delta < 0$.

Same as hyperbolic, except ∂M is finitely covered by Nil manifold.

Horoballs

Theorem (Gromov)

If -1 < K < 0 and $vol(M) < \infty$ then M is the interior of a compact manifold with boundary ∂M .

Theorem (Gromov)

If -1 < K < 0 and $vol(M) < \infty$ then M is the interior of a compact manifold with boundary ∂M .

What if $-1 < K \le 0$?

Theorem (Gromov)

If -1 < K < 0 and $vol(M) < \infty$ then M is the interior of a compact manifold with boundary ∂M .

What if $-1 < K \le 0$?

• 3-dimensional infinite type graph manifold.

Theorem (Gromov)

If -1 < K < 0 and $vol(M) < \infty$ then M is the interior of a compact manifold with boundary ∂M .

What if -1 < K < 0?

- 3-dimensional infinite type graph manifold.
- Tame if no small flat 2-tori (Schröder).

Theorem (Gromov)

If -1 < K < 0 and $vol(M) < \infty$ then M is the interior of a compact manifold with boundary ∂M .

What if -1 < K < 0?

- 3-dimensional infinite type graph manifold.
- Tame if no small flat 2-tori (Schröder).

Question:

What is topology of ∂M ? Is it aspherical? Is it a quotient of a horoball?

Products of surfaces

Negatively curved examples

Topological restrictions on ends

M complete, Riemannian manifold.

Theorem (Nguyen-Phan)

If M is a 4-dimensional manifold, -1 < K < 0, and $vol(M) < \infty$ then ∂M is aspherical.

Topological restrictions on ends

M complete, Riemannian manifold.

Theorem (Nguyen-Phan)

If M is a 4-dimensional manifold, -1 < K < 0, and $vol(M) < \infty$ then ∂M is aspherical. (Equivalently, $H_2(\widetilde{\partial M}) = 0$).

Topological restrictions on ends

M complete, Riemannian manifold.

Theorem (Nguyen-Phan)

If M is a 4-dimensional manifold, -1 < K < 0, and $vol(M) < \infty$ then ∂M is aspherical. (Equivalently, $H_2(\widetilde{\partial M}) = 0$).

Theorem (A.)

If -1 < K < 0 and $vol(M) < \infty$ then

$$H_{\geq n-2}(\widetilde{\partial M}) = 0, \tag{1}$$

$$H_{\geq n-2}(\partial \widetilde{M}) = 0. \tag{2}$$

The same is true if $-1 < K \le 0$ and M is tame.

Corollary (A.)

The fundamental group is freely indecomposable: $\pi_1 M \neq A * B$.

