
Ends of nonpositively curved manifolds

Grigori Avramidi

May 25, 2016

Grigori Avramidi Ends of nonpositively curved manifolds



Non-compact hyperbolic surfaces
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Hyperbolic manifolds

M complete, Riemannian, vol <∞, curvature K = −1.

inj(x) = max radius of embedded ball centered at x .
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Pinched negative curvature −1 < K < −δ < 0.

Same as hyperbolic, except ∂M is finitely covered by Nil manifold.
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Horoballs
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Tameness

Theorem (Gromov)

If −1 < K < 0 and vol(M) <∞ then M is the interior of a
compact manifold with boundary ∂M.

What if −1 < K ≤ 0?

3-dimensional infinite type graph manifold.

Tame if no small flat 2-tori (Schröder).

Question:

What is topology of ∂M? Is it aspherical? Is it a quotient of a
horoball?
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Products of surfaces
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Negatively curved examples
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Topological restrictions on ends

M complete, Riemannian manifold.

Theorem (Nguyen-Phan)

If M is a 4-dimensional manifold, −1 < K < 0, and vol(M) <∞
then ∂M is aspherical.

(Equivalently, H2(∂̃M) = 0).

Theorem (A.)

If −1 < K < 0 and vol(M) <∞ then

H≥n−2(∂̃M) = 0, (1)

H≥n−2(∂M̃) = 0. (2)

The same is true if −1 < K ≤ 0 and M is tame.

Corollary (A.)

The fundamental group is freely indecomposable: π1M 6= A ∗ B.
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