Densities and uniformly distributed measures in the Heisenberg group

Vasilis Chousionis
University of Connecticut

May 26, 2016

Densities of measures

Let μ be a Radon measure on a metric space (X, d). The upper and lower s-densities of μ at $x \in X$ are

$$
\Theta^{* s}(\mu, x)=\limsup _{r \rightarrow 0} \frac{\mu(B(x, r))}{r^{s}} \text { and } \Theta_{*}^{s}(\mu, x)=\liminf _{r \rightarrow 0} \frac{\mu(B(x, r))}{r^{s}} .
$$

If the limit exists, call it the s-density of μ at x and denote it by $\Theta^{s}(\mu, x)$.

Densities of measures

Let μ be a Radon measure on a metric space (X, d). The upper and lower s-densities of μ at $x \in X$ are

$$
\Theta^{* s}(\mu, x)=\limsup _{r \rightarrow 0} \frac{\mu(B(x, r))}{r^{s}} \text { and } \Theta_{*}^{s}(\mu, x)=\liminf _{r \rightarrow 0} \frac{\mu(B(x, r))}{r^{s}}
$$

If the limit exists, call it the s-density of μ at x and denote it by $\Theta^{s}(\mu, x)$.
$■$ Lebesgue density theorem : $A \subset \mathbb{R}^{n}, \mathcal{L}^{n}$-measurable \Longrightarrow

$$
\Theta^{n}\left(\mathcal{L}^{n}\llcorner A, \cdot)= \begin{cases}\mathcal{L}^{n}(B(0,1)), & \mathcal{L}^{n} \text { - a.e. in } A \\ 0 & \mathcal{L}^{n} \text { - a.e. in } \mathbb{R}^{n} \backslash A\end{cases}\right.
$$

s-dimensional Hausdorff measures \mathcal{H}^{s}

Let $A \subset(X, d)$ be any set. Let $s \geq 0$ be any nonnegative real number 1 For any $\delta>0$ cover A by sets E_{1}, E_{2}, \ldots of diameter $\leq \delta$

s-dimensional Hausdorff measures \mathcal{H}^{s}

Let $A \subset(X, d)$ be any set. Let $s \geq 0$ be any nonnegative real number 1 For any $\delta>0$ cover A by sets E_{1}, E_{2}, \ldots of diameter $\leq \delta$
2 Weight each set in the cover by its diameter to power s

s-dimensional Hausdorff measures \mathcal{H}^{s}

Let $A \subset(X, d)$ be any set. Let $s \geq 0$ be any nonnegative real number
1 For any $\delta>0$ cover A by sets E_{1}, E_{2}, \ldots of diameter $\leq \delta$
2 Weight each set in the cover by its diameter to power s
3 Optimize over all such covers

$$
\mathcal{H}_{\delta}^{s}(A):=\inf \left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} E_{i}\right)^{s}: A \subset \bigcup_{i=1}^{\infty} E_{i} ; \operatorname{diam} E_{i} \leq \delta\right\}
$$

4 Use only finer and finer covers

$$
\mathcal{H}^{s}(A):=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(A)
$$

s-dimensional Hausdorff measures \mathcal{H}^{s}

Let $A \subset(X, d)$ be any set. Let $s \geq 0$ be any nonnegative real number
1 For any $\delta>0$ cover A by sets E_{1}, E_{2}, \ldots of diameter $\leq \delta$
2 Weight each set in the cover by its diameter to power s
3 Optimize over all such covers

$$
\mathcal{H}_{\delta}^{s}(A):=\inf \left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} E_{i}\right)^{s}: A \subset \bigcup_{i=1}^{\infty} E_{i} ; \operatorname{diam} E_{i} \leq \delta\right\}
$$

4 Use only finer and finer covers

$$
\mathcal{H}^{\mathcal{S}}(A):=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{\mathcal{S}}(A)
$$

\mathcal{H}^{s} is called s-dimensional Hausdorff measure

Hausdorff dimension

For any set $A \subset(X, d)$, there is a unique number $s \geq 0$ such that
$1 \mathcal{H}^{s}(A)=\infty$ for all $s<d$
2 $\mathcal{H}^{s}(A)=0$ for all $s>d$
$H^{\mathrm{s}}(\mathrm{A})$

The number $s=\operatorname{dim}_{H}(A)$ where the transition happens is called the Hausdorff dimension of A.

Hausdorff dimension of Cantor sets

For all $\lambda \in(0,1 / 2)$, the Cantor set $C(\lambda)$ has Hausdorff dimension

$$
\operatorname{dim}_{H} C(\lambda)=\frac{\log (2)}{\log (1 / \lambda)} \in(0,1)
$$

च
■
$\square \operatorname{dim}_{H} C(1 / 4)=\log (2) / \log (4)=0.5000000 \ldots$

$\square \operatorname{dim}_{H} C(1 / 3)=\log (2) / \log (3)=0.6309292 \ldots$

$\square \operatorname{dim}_{H} C(9 / 20)=\log (2) / \log (20 / 9)=0.8680532 \ldots$

$\square \operatorname{dim}_{H} C(\lambda) \downarrow 0$ as $\lambda \downarrow 0$
$\square \operatorname{dim}_{H} C(\lambda) \uparrow 1$ as $\lambda \uparrow 1 / 2$

Densities for Hausdorff measures

$■$ If $A \subset \mathbb{R}^{n}, \mathcal{H}^{s}$-measurable and $\mathcal{H}^{s}(A)<\infty$,

$$
1 \leq \Theta^{* s}\left(\mathcal{H}^{s}\llcorner A, \cdot) \leq 2^{s}, \quad \mathcal{H}^{s} \text {-a.e. in } A\right.
$$

Densities for Hausdorff measures

$■$ If $A \subset \mathbb{R}^{n}, \mathcal{H}^{s}$-measurable and $\mathcal{H}^{s}(A)<\infty$,

$$
1 \leq \Theta^{* s}\left(\mathcal{H}^{s}\llcorner A, \cdot) \leq 2^{s}, \quad \mathcal{H}^{s} \text {-a.e. in } A\right.
$$

and

$$
\Theta^{s}\left(\mathcal{H}^{s}\llcorner A, \cdot)=0, \mathcal{H}^{s} \text {-a.e. in } \mathbb{R}^{n} \backslash A .\right.
$$

Marstrand density theorem

Theorem (Marstrand 1954 and 1964)

Suppose for some s >0, that there exists a Radon measure μ in \mathbb{R}^{n} s.t. $\Theta^{s}(\mu, \cdot)$ exists and is positive and finite in a set of positive μ-measure. Then $s \in \mathbb{N}$.

Marstrand density theorem

Theorem (Marstrand 1954 and 1964)

Suppose for some $s>0$, that there exists a Radon measure μ in \mathbb{R}^{n} s.t. $\Theta^{s}(\mu, \cdot)$ exists and is positive and finite in a set of positive μ-measure. Then $s \in \mathbb{N}$.

Sets with noninteger Hausdorff dimension are irregular at 'generic' points.

Preiss density theorem

Theorem (Preiss 1987)

Let μ be a Radon measure in \mathbb{R}^{n} such that the density $\Theta^{m}(\mu, \cdot), m \in \mathbb{N}$, exists and is positive and finite μ a.e. Then $\operatorname{supp}(\mu)$ is m-rectifiable and $\mu \ll \mathcal{H}^{m}\llcorner\operatorname{supp}(\mu)$.
$E \subset \mathbb{R}^{n}$ is m-rectifiable if there exist countably many m-dimensional Lipschitz graphs M_{i} such that

$$
\mathcal{H}^{m}\left(E \backslash \cup M_{i}\right)=0 .
$$

Preiss density theorem

Theorem (Preiss 1987)

Let μ be a Radon measure in \mathbb{R}^{n} such that the density $\Theta^{m}(\mu, \cdot), m \in \mathbb{N}$, exists and is positive and finite μ a.e. Then $\operatorname{supp}(\mu)$ is m-rectifiable and $\mu \ll \mathcal{H}^{m}\llcorner\operatorname{supp}(\mu)$.
$E \subset \mathbb{R}^{n}$ is m-rectifiable if there exist countably many m-dimensional Lipschitz graphs M_{i} such that

$$
\mathcal{H}^{m}\left(E \backslash \cup M_{i}\right)=0
$$

Eariler work by Besicovitch, Morse-Randolph, Moore.

A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)

Let μ be a Radon measure in \mathbb{R}^{n} and let $s \notin \mathbb{Z}$. Then

$$
\iint_{0}^{\infty}\left(\frac{\mu(B(x, r))}{r^{s}}-\frac{\mu(B(x, 2 r))}{(2 r)^{s}}\right)^{2} \frac{d r}{r} d \mu(x) \approx \iint_{0}^{\infty}\left(\frac{\mu(B(x, r))}{r^{s}}\right)^{2} \frac{d r}{r} d \mu(x)
$$

A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)

Let μ be a Radon measure in \mathbb{R}^{n} and let $s \notin \mathbb{Z}$. Then

$$
\iint_{0}^{\infty}\left(\frac{\mu(B(x, r))}{r^{s}}-\frac{\mu(B(x, 2 r))}{(2 r)^{s}}\right)^{2} \frac{d r}{r} d \mu(x) \approx \iint_{0}^{\infty}\left(\frac{\mu(B(x, r))}{r^{s}}\right)^{2} \frac{d r}{r} d \mu(x)
$$

■ The theorem fails for $n \in \mathbb{N}$.

A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)

Let μ be a Radon measure in \mathbb{R}^{n} and let $s \notin \mathbb{Z}$. Then

$$
\iint_{0}^{\infty}\left(\frac{\mu(B(x, r))}{r^{s}}-\frac{\mu(B(x, 2 r))}{(2 r)^{s}}\right)^{2} \frac{d r}{r} d \mu(x) \approx \iint_{0}^{\infty}\left(\frac{\mu(B(x, r))}{r^{s}}\right)^{2} \frac{d r}{r} d \mu(x)
$$

- The theorem fails for $n \in \mathbb{N}$.

■ Wolff potentials, $\int_{0}^{\infty} \frac{\mu(B(x, r))^{2}}{r^{2}} \frac{d r}{r}$ used to characterize Sobolev spaces.

A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)

Let μ be a Radon measure in \mathbb{R}^{n} and let $s \notin \mathbb{Z}$. Then

$$
\iint_{0}^{\infty}\left(\frac{\mu(B(x, r))}{r^{s}}-\frac{\mu(B(x, 2 r))}{(2 r)^{s}}\right)^{2} \frac{d r}{r} d \mu(x) \approx \iint_{0}^{\infty}\left(\frac{\mu(B(x, r))}{r^{s}}\right)^{2} \frac{d r}{r} d \mu(x)
$$

■ The theorem fails for $n \in \mathbb{N}$.

- Wolff potentials, $\int_{0}^{\infty} \frac{\mu(B(x, r))^{2}}{r^{2 s}} \frac{d r}{r}$ used to characterize Sobolev spaces.
■ (C, Garnett, Le, Tolsa) introduced $\Delta_{\mu}^{s}(x, r)=\frac{\mu(B(x, r))}{r^{s}}-\frac{\mu(B(x, 2 r))}{(2 r)^{s}}$ to give a characterization of uniform rectifiability using densities.

A lemma from the proof

Lemma (C, Prat, Tolsa)

Let μ be a nontrivial Radon measure in \mathbb{R}^{n} and let $s \notin \mathbb{Z}$. Then there exist $x_{0} \in \operatorname{supp}(\mu)$ and $r_{0}>0$ such that $\Delta_{\mu}^{s}\left(x_{0}, r_{0}\right) \neq 0$, that is

$$
\frac{\mu\left(B\left(x_{0}, r_{0}\right)\right)}{r_{0}^{s}} \neq \frac{\mu\left(B\left(x_{0}, 2 r_{0}\right)\right)}{\left(2 r_{0}\right)^{s}}
$$

A lemma from the proof

Lemma (C, Prat, Tolsa)

Let μ be a nontrivial Radon measure in \mathbb{R}^{n} and let $s \notin \mathbb{Z}$. Then there exist $x_{0} \in \operatorname{supp}(\mu)$ and $r_{0}>0$ such that $\Delta_{\mu}^{s}\left(x_{0}, r_{0}\right) \neq 0$, that is

$$
\frac{\mu\left(B\left(x_{0}, r_{0}\right)\right)}{r_{0}^{s}} \neq \frac{\mu\left(B\left(x_{0}, 2 r_{0}\right)\right)}{\left(2 r_{0}\right)^{s}}
$$

■ The proof depends on the Euclidean metric.

A lemma from the proof

Lemma (C, Prat, Tolsa)

Let μ be a nontrivial Radon measure in \mathbb{R}^{n} and let $s \notin \mathbb{Z}$. Then there exist $x_{0} \in \operatorname{supp}(\mu)$ and $r_{0}>0$ such that $\Delta_{\mu}^{s}\left(x_{0}, r_{0}\right) \neq 0$, that is

$$
\frac{\mu\left(B\left(x_{0}, r_{0}\right)\right)}{r_{0}^{s}} \neq \frac{\mu\left(B\left(x_{0}, 2 r_{0}\right)\right)}{\left(2 r_{0}\right)^{s}}
$$

- The proof depends on the Euclidean metric.
- (C, Rajala) True for $s<1$ even when (X, d) is a complete metric space.

A lemma from the proof

Lemma (C, Prat, Tolsa)

Let μ be a nontrivial Radon measure in \mathbb{R}^{n} and let $s \notin \mathbb{Z}$. Then there exist $x_{0} \in \operatorname{supp}(\mu)$ and $r_{0}>0$ such that $\Delta_{\mu}^{s}\left(x_{0}, r_{0}\right) \neq 0$, that is

$$
\frac{\mu\left(B\left(x_{0}, r_{0}\right)\right)}{r_{0}^{s}} \neq \frac{\mu\left(B\left(x_{0}, 2 r_{0}\right)\right)}{\left(2 r_{0}\right)^{s}}
$$

- The proof depends on the Euclidean metric.
- (C, Rajala) True for $s<1$ even when (X, d) is a complete metric space.
■ Unknown for other metrics in \mathbb{R}^{n}.

Results for other metric spaces

Several papers by A. Lorent about metrics in \mathbb{R}^{n} defined by centrally symmetric convex polytopes. For example, he proves

■ Marstrand's theorem for d_{∞} and $s \leq 2$.
■ locally 2-uniform measures in $\left(\mathbb{R}^{3}, d_{\infty}\right)$ are rectifiable.

The Heisenberg group

■ $\mathbb{H}^{n}=\mathbb{R}^{2 n+1} \ni p=(z, t)=(x, y, t)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, t\right)$
■ $(z, t) *\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}+2 \omega\left(z, z^{\prime}\right)\right)$,
where $\omega\left(z, z^{\prime}\right)=x \cdot y^{\prime}-x^{\prime} \cdot y$
■ Horizontal distribution:

$$
\begin{aligned}
H_{p} \mathbb{H}^{n} & =\operatorname{span}\left\{X_{1}(p), Y_{1}(p), \ldots, X_{n}(p), Y_{n}(p)\right\} \\
X_{1} & =\frac{\partial}{\partial x_{1}}+2 y_{1} \frac{\partial}{\partial t}, \ldots, X_{n}=\frac{\partial}{\partial x_{n}}+2 y_{n} \frac{\partial}{\partial t} \\
Y_{1} & =\frac{\partial}{\partial y_{1}}-2 x_{1} \frac{\partial}{\partial t}, \ldots, Y_{n}=\frac{\partial}{\partial y_{n}}-2 x_{n} \frac{\partial}{\partial t}
\end{aligned}
$$

■ Gauge (Korányi) metric:

$$
d_{\mathbb{H}}(p, q)=\left\|p^{-1} * q\right\|_{\mathbb{H}}, \quad\|(z, t)\|_{\mathbb{H}}=\left(|z|^{4}+t^{2}\right)^{1 / 4}
$$

■ Dilations: $\delta_{r}: \mathbb{H}^{n} \rightarrow \mathbb{H}^{n}, r>0$,

$$
\delta_{r}(z, t)=\left(r z, r^{2} t\right)
$$

The geometry of \mathbb{H} : Sub-Riemannian structure

Let X_{1}, X_{2} be the left invariant vector fields

$$
X_{1}=\partial_{x_{1}}+2 x_{2} \partial_{x_{3}} \text { and } X_{2}=\partial_{x_{2}}-2 x_{1} \partial_{x_{3}}
$$

The geometry of \mathbb{H} : Sub-Riemannian structure

Let X_{1}, X_{2} be the left invariant vector fields

$$
X_{1}=\partial_{x_{1}}+2 x_{2} \partial_{x_{3}} \text { and } X_{2}=\partial_{x_{2}}-2 x_{1} \partial_{x_{3}}
$$

- Motion is only allowed along the horizontal planes:

$$
H_{p} \mathbb{H}^{1}=\operatorname{span}\left\{X_{1}(p), X_{2}(p)\right\}
$$

Balls in $\left(\mathbb{H}, d_{H}\right)$

$\operatorname{dim}_{H}(\mathbb{H})=4$

Marstrand's theorem in the Heisenberg group

Recall, $d_{\mathbb{H}}(p, q)=\left\|p^{-1} * q\right\|_{\mathbb{H}}, \quad\|(z, t)\|_{\mathbb{H}}=\left(|z|^{4}+t^{2}\right)^{1 / 4}$

Marstrand's theorem in the Heisenberg group

Recall, $d_{\mathbb{H}}(p, q)=\left\|p^{-1} * q\right\|_{\mathbb{H}}, \quad\|(z, t)\|_{\mathbb{H}}=\left(|z|^{4}+t^{2}\right)^{1 / 4}$
Theorem (C, Tyson)
Let μ be a Radon measure in $\left(\mathbb{H}^{n}, d_{\mathbb{H}}\right)$. If the density $\Theta_{\mathbb{H}}^{s}(\mu, \cdot)$ exists and is positive and finite in a set of positive μ-measure, then $s \in \mathbb{N}$.

Marstrand's theorem in the Heisenberg group

$$
\text { Recall, } d_{\mathbb{H}}(p, q)=\left\|p^{-1} * q\right\|_{\mathbb{H}}, \quad\|(z, t)\|_{\mathbb{H}}=\left(|z|^{4}+t^{2}\right)^{1 / 4}
$$

Theorem (C, Tyson)
Let μ be a Radon measure in $\left(\mathbb{H}^{n}, d_{\mathbb{H}}\right)$. If the density $\Theta_{\mathbb{H}}^{s}(\mu, \cdot)$ exists and is positive and finite in a set of positive μ-measure, then $s \in \mathbb{N}$.

Remarks

■ Marstrand's proof is very Euclidean.

Marstrand's theorem in the Heisenberg group

$$
\text { Recall, } d_{\mathbb{H}}(p, q)=\left\|p^{-1} * q\right\|_{\mathbb{H}}, \quad\|(z, t)\|_{\mathbb{H}}=\left(|z|^{4}+t^{2}\right)^{1 / 4}
$$

Theorem (C, Tyson)
Let μ be a Radon measure in $\left(\mathbb{H}^{n}, d_{\mathbb{H}}\right)$. If the density $\Theta_{\mathbb{H}}^{S}(\mu, \cdot)$ exists and is positive and finite in a set of positive μ-measure, then $s \in \mathbb{N}$.

Remarks

■ Marstrand's proof is very Euclidean.

- Another proof, due to Kirchheim and Preiss, uses uniformly distributed measures.

Uniformly distributed and uniform measures

Definition

A Radon measure on a metric space (X, d) is called uniformly distributed if

$$
\mu(B(x, r))=\mu(B(y, r))
$$

for all $x, y \in \operatorname{supp}(\mu)$ and all $r>0$.

Uniformly distributed and uniform measures

Definition

A Radon measure on a metric space (X, d) is called uniformly distributed if

$$
\mu(B(x, r))=\mu(B(y, r))
$$

for all $x, y \in \operatorname{supp}(\mu)$ and all $r>0$.

Definition

Let $s>0$. A Radon measure on a metric space (X, d) is called s-uniform if there exists some constant $c>0$ such that

$$
\mu(B(x, r))=c r^{s}
$$

for all $x \in \operatorname{supp}(\mu)$ and all $r>0$.

Kirchheim-Preiss Theorem

Theorem (Kirchheim-Preiss)

Let μ be a uniformly distributed measure in \mathbb{R}^{n}. Then $\operatorname{supp}(\mu)$ is a real analytic variety.

Kirchheim-Preiss Theorem

Theorem (Kirchheim-Preiss)

Let μ be a uniformly distributed measure in \mathbb{R}^{n}. Then $\operatorname{supp}(\mu)$ is a real analytic variety.

Theorem (C, Tyson)

Let μ be a uniformly distributed measure in $\left(\mathbb{H}^{n}, d_{\mathbb{H}}\right)$. Then $\operatorname{supp}(\mu)$ is a real analytic variety in $\mathbb{R}^{2 n+1}$.

Tangent measures and uniform measures in Marstrand's theorem

Let \mathbb{G} be \mathbb{R}^{n} or \mathbb{H}^{n}. Let μ be a Radon measure on \mathbb{G}. For $a \in \mathbb{G}, r>0$, denote the blow-ups of μ from $B(a, r)$ to $B(0,1)$ by

$$
\mu_{a, r}(A)=\mu\left(a *\left(\delta_{r}(A)\right), A \subset \mathbb{G} .\right.
$$

Tangent measures and uniform measures in Marstrand's theorem

Let \mathbb{G} be \mathbb{R}^{n} or \mathbb{H}^{n}. Let μ be a Radon measure on \mathbb{G}. For $a \in \mathbb{G}, r>0$, denote the blow-ups of μ from $B(a, r)$ to $B(0,1)$ by

$$
\mu_{a, r}(A)=\mu\left(a *\left(\delta_{r}(A)\right), A \subset \mathbb{G} .\right.
$$

ν is a tangent measure of μ at $a \in \mathbb{G}$ if ν is a Radon measure on \mathbb{G} with $\nu(\mathbb{G})>0$ and there are $c_{i}>0$ and $r_{i}>0, i \in \mathbb{N}$, such that $r_{i} \rightarrow 0$ and

$$
c_{i} \mu_{a, r_{i}} \rightarrow \nu \text { weakly as } i \rightarrow \infty .
$$

Tangent measures and uniform measures in Marstrand's theorem

Let \mathbb{G} be \mathbb{R}^{n} or \mathbb{H}^{n}. Let μ be a Radon measure on \mathbb{G}. For $a \in \mathbb{G}, r>0$, denote the blow-ups of μ from $B(a, r)$ to $B(0,1)$ by

$$
\mu_{a, r}(A)=\mu\left(a *\left(\delta_{r}(A)\right), A \subset \mathbb{G} .\right.
$$

ν is a tangent measure of μ at $a \in \mathbb{G}$ if ν is a Radon measure on \mathbb{G} with $\nu(\mathbb{G})>0$ and there are $c_{i}>0$ and $r_{i}>0, i \in \mathbb{N}$, such that $r_{i} \rightarrow 0$ and

$$
c_{i} \mu_{a, r_{i}} \rightarrow \nu \text { weakly as } i \rightarrow \infty .
$$

We denote by $\operatorname{Tan}(\mu, a)$ the set of all tangent measures of μ at a.

Tangent measures and uniform measures in Marstrand's theorem

Let \mathbb{G} be \mathbb{R}^{n} or \mathbb{H}^{n}. Let μ be a Radon measure on \mathbb{G}. For $a \in \mathbb{G}, r>0$, denote the blow-ups of μ from $B(a, r)$ to $B(0,1)$ by

$$
\mu_{a, r}(A)=\mu\left(a *\left(\delta_{r}(A)\right), A \subset \mathbb{G} .\right.
$$

ν is a tangent measure of μ at $a \in \mathbb{G}$ if ν is a Radon measure on \mathbb{G} with $\nu(\mathbb{G})>0$ and there are $c_{i}>0$ and $r_{i}>0, i \in \mathbb{N}$, such that $r_{i} \rightarrow 0$ and

$$
c_{i} \mu_{a, r_{i}} \rightarrow \nu \text { weakly as } i \rightarrow \infty .
$$

We denote by $\operatorname{Tan}(\mu, a)$ the set of all tangent measures of μ at a.

Proposition

Let $s>0$. Let μ be a Radon measure such that $0<\Theta^{s}(\mu, \cdot)<\infty$ exists μ-a.e. in $A \subset \mathbb{G}$. Then for μ a.e. $a \in A, \operatorname{Tan}(\mu, a)$, consists of s-uniform measures.

Marstrand theorem: scheme of the proof

$$
0<\Theta^{s}(\mu, \cdot)<\infty \text { exists } \mu-\text { a.e. in } A \subset \mathbb{H}^{n}
$$

Marstrand theorem: scheme of the proof

$$
\begin{gathered}
0<\Theta^{s}(\mu, \cdot)<\infty \text { exists } \mu-\text { a.e. in } A \subset \mathbb{H}^{n} \\
\Downarrow \\
\exists s-\text { uniform measure } \nu
\end{gathered}
$$

Marstrand theorem: scheme of the proof

$$
0<\Theta^{s}(\mu, \cdot)<\infty \text { exists } \mu-\text { a.e. in } A \subset \mathbb{H}^{n}
$$

$$
\Downarrow
$$

$\exists s$ - uniform measure ν
\Downarrow (Kirhchheim-Preiss Theorem) $\operatorname{supp}(\nu)$ is a real analytic variety

Marstrand theorem: scheme of the proof

$$
\begin{gathered}
0<\Theta^{s}(\mu, \cdot)<\infty \text { exists } \mu-\text { a.e. in } A \subset \mathbb{H}^{n} \\
\Downarrow
\end{gathered}
$$

$$
\exists s-\text { uniform measure } \nu
$$

\Downarrow (Kirhchheim-Preiss Theorem) $\operatorname{supp}(\nu)$ is a real analytic variety

$$
\Downarrow \quad \text { (Lojasiewicz Theorem) }
$$

$\operatorname{supp}(\nu)$ is a countable union of real analytic submanifolds

Marstrand theorem: scheme of the proof

$$
\begin{gathered}
0<\Theta^{\mathcal{S}}(\mu, \cdot)<\infty \text { exists } \mu-\text { a.e. in } A \subset \mathbb{H}^{n} \\
\Downarrow
\end{gathered}
$$

$$
\exists s-\text { uniform measure } \nu
$$

\Downarrow (Kirhchheim-Preiss Theorem) $\operatorname{supp}(\nu)$ is a real analytic variety

$$
\Downarrow \quad \text { (Lojasiewicz Theorem) }
$$

$\operatorname{supp}(\nu)$ is a countable union of real analytic submanifolds

$$
\begin{gathered}
\Downarrow \quad(\text { Gromov Theorem }) \\
\operatorname{dim}_{H}(\operatorname{supp}(\nu)) \in \mathbb{N}
\end{gathered}
$$

Marstrand theorem: scheme of the proof

$$
\begin{gathered}
0<\Theta^{s}(\mu, \cdot)<\infty \text { exists } \mu-\text { a.e. in } A \subset \mathbb{H}^{n} \\
\Downarrow
\end{gathered}
$$

$\exists s$ - uniform measure ν
\Downarrow (Kirhchheim-Preiss Theorem) $\operatorname{supp}(\nu)$ is a real analytic variety

$$
\Downarrow \quad \text { (Lojasiewicz Theorem) }
$$

$\operatorname{supp}(\nu)$ is a countable union of real analytic submanifolds

$$
\begin{gathered}
\Downarrow \quad(\text { Gromov Theorem }) \\
\operatorname{dim}_{H}(\operatorname{supp}(\nu)) \in \mathbb{N} \\
\Downarrow \\
s \in \mathbb{N} .
\end{gathered}
$$

Hausdorff dimension of submanifolds of \mathbb{H}^{n}

Theorem (Gromov)
Let Σ be an m-dimensional $C^{1,1}$ submanifold in \mathbb{H}^{n}, then

$$
\operatorname{dim}_{H}(\Sigma)=\bar{m} \in\{m, m+1\}
$$

Hausdorff dimension of submanifolds of \mathbb{H}^{n}

Theorem (Gromov)
Let Σ be an m-dimensional $C^{1,1}$ submanifold in \mathbb{H}^{n}, then

$$
\operatorname{dim}_{H}(\Sigma)=\bar{m} \in\{m, m+1\}
$$

Wolff potentials in $\left(\mathbb{H}^{n}, d_{\mathbb{H}}\right)$

Lemma (C, Tyson)

Let μ be a nontrivial Radon measure in $\left(\mathbb{H}^{n}, d_{\mathbb{H}}\right)$ and let $s \notin \mathbb{Z}$. Then there exist $x_{0} \in \operatorname{supp}(\mu)$ and $r_{0}>0$ such that

$$
\frac{\mu\left(B\left(x_{0}, r_{0}\right)\right)}{r_{0}^{s}} \neq \frac{\mu\left(B\left(x_{0}, 2 r_{0}\right)\right)}{\left(2 r_{0}\right)^{s}} .
$$

Wolff potentials in $\left(\mathbb{H}^{n}, d_{\mathbb{H}}\right)$

Lemma (C, Tyson)

Let μ be a nontrivial Radon measure in $\left(\mathbb{H}^{n}, d_{\mathbb{H}}\right)$ and let $s \notin \mathbb{Z}$. Then there exist $x_{0} \in \operatorname{supp}(\mu)$ and $r_{0}>0$ such that

$$
\frac{\mu\left(B\left(x_{0}, r_{0}\right)\right)}{r_{0}^{s}} \neq \frac{\mu\left(B\left(x_{0}, 2 r_{0}\right)\right)}{\left(2 r_{0}\right)^{s}}
$$

\Downarrow

Theorem (C, Tyson)

Let μ be a Radon measure in $\left(\mathbb{H}^{n}, d_{\mathbb{H}}\right)$ and let $s \notin \mathbb{Z}$. Then

$$
\iint_{0}^{\infty}\left(\frac{\mu(B(x, r))}{r^{s}}-\frac{\mu(B(x, 2 r))}{(2 r)^{s}}\right)^{2} \frac{d r}{r} d \mu(x) \approx \iint_{0}^{\infty} \frac{\mu(B(x, r))^{2}}{r^{2 s}} \frac{d r}{r} d \mu(x)
$$

Uniformly distributed measures with bdd support

- (Kirchheim-Preiss) Bounded supports of Euclidean uniformly distributed measures are contained in spheres

Uniformly distributed measures with bdd support

■ (Kirchheim-Preiss) Bounded supports of Euclidean uniformly distributed measures are contained in spheres
■ (C, Tyson) Bounded supports of uniformly distributed measures on \mathbb{H}^{n} are algebraic varieties

Uniformly distributed measures with bdd support

■ (Kirchheim-Preiss) Bounded supports of Euclidean uniformly distributed measures are contained in spheres
■ (C, Tyson) Bounded supports of uniformly distributed measures on \mathbb{H}^{n} are algebraic varieties
■ (Kirchheim-Preiss) Uniformly distributed counting measures with finite support in \mathbb{R}^{2} are supported on either the vertices of a regular polygon, or two regular m-gons lying on a common circle

Uniformly distributed measures with bdd support

■ (Kirchheim-Preiss) Bounded supports of Euclidean uniformly distributed measures are contained in spheres
■ (C, Tyson) Bounded supports of uniformly distributed measures on \mathbb{H}^{n} are algebraic varieties
■ (Kirchheim-Preiss) Uniformly distributed counting measures with finite support in \mathbb{R}^{2} are supported on either the vertices of a regular polygon, or two regular m-gons lying on a common circle
■ Characterization of uniformly distributed counting measures with finite support in \mathbb{H}^{1} is open.

Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if $d(x, y)$ is constant for all $x, y \in A, x \neq y$.

- Counting measure is uniformly distributed on each equilateral set

Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if $d(x, y)$ is constant for all $x, y \in A, x \neq y$.

- Counting measure is uniformly distributed on each equilateral set
$■$ (C, Tyson) Characterization equilateral triangles in ($\left.\mathbb{H}, d_{\mathbb{H}}\right)$. Such triangles fall into three distinct classes:
1 two vertices lie on a vertical line,
2 two vertices lie on a horizontal line,
3 no two vertices lie on either a horizontal or a vertical line.

Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if $d(x, y)$ is constant for all $x, y \in A, x \neq y$.

- Counting measure is uniformly distributed on each equilateral set
$■$ (C, Tyson) Characterization equilateral triangles in ($\left.\mathbb{H}, d_{\mathbb{H}}\right)$. Such triangles fall into three distinct classes:
1 two vertices lie on a vertical line,
2 two vertices lie on a horizontal line,
3 no two vertices lie on either a horizontal or a vertical line.
■ We declined to characterize equilateral 4 point sets (probably tractable)

Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if $d(x, y)$ is constant for all $x, y \in A, x \neq y$.

- Counting measure is uniformly distributed on each equilateral set
$■$ (C, Tyson) Characterization equilateral triangles in ($\left.\mathbb{H}, d_{\mathbb{H}}\right)$. Such triangles fall into three distinct classes:
1 two vertices lie on a vertical line,
2 two vertices lie on a horizontal line,
3 no two vertices lie on either a horizontal or a vertical line.
■ We declined to characterize equilateral 4 point sets (probably tractable)
■ Unknown if there exist equilateral 5 point subsets of $\left(\mathbb{H}^{1}, d_{\mathbb{H}}\right)$!

Uniform measures in $\left(\mathbb{R}^{n}, d_{E}\right)$

■ (Preiss) For $m=1,2$ all m-uniform measures are m-flat; a measure μ is m-flat if $\mu=c_{\mu} \mathcal{H}^{m}\llcorner V, V \in G(n, m)$.

Uniform measures in $\left(\mathbb{R}^{n}, d_{E}\right)$

■ (Preiss) For $m=1,2$ all m-uniform measures are m-flat; a measure μ is m-flat if $\mu=c_{\mu} \mathcal{H}^{m} L V, V \in G(n, m)$.
$■$ (Preiss) The light cone $C=\left\{x \in \mathbb{R}^{4}: x_{1}^{2}=x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right\}$ is 3-uniform!

Uniform measures in $\left(\mathbb{R}^{n}, d_{E}\right)$

■ (Preiss) For $m=1,2$ all m-uniform measures are m-flat; a measure μ is m-flat if $\mu=c_{\mu} \mathcal{H}^{m} L V, V \in G(n, m)$.
$■$ (Preiss) The light cone $C=\left\{x \in \mathbb{R}^{4}: x_{1}^{2}=x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right\}$ is 3-uniform!

- (Preiss-Kowalski) Every $(n-1)$-uniform measure in \mathbb{R}^{n} is either ($n-1$)-flat or is a constant multiple of \mathcal{H}^{n-1} on some isometric copy of $C \times \mathbb{R}^{n-4}$.

Uniform measures in $\left(\mathbb{R}^{n}, d_{E}\right)$

■ (Preiss) For $m=1,2$ all m-uniform measures are m-flat; a measure μ is m-flat if $\mu=c_{\mu} \mathcal{H}^{m} L V, V \in G(n, m)$.
$■$ (Preiss) The light cone $C=\left\{x \in \mathbb{R}^{4}: x_{1}^{2}=x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right\}$ is 3-uniform!
■ (Preiss-Kowalski) Every $(n-1)$-uniform measure in \mathbb{R}^{n} is either ($n-1$)-flat or is a constant multiple of \mathcal{H}^{n-1} on some isometric copy of $C \times \mathbb{R}^{n-4}$.
■ Classification open for $3 \leq m<n-1$.

Classification of uniform measures in $\left(\mathbb{H}^{1}, d_{\mathbb{H}}\right)$

Ongoing project with V. Magnani and J. Tyson.

Marstrand's theorem in $\mathbb{H}^{n} \Longrightarrow$ there are no s-uniform measures for $s \notin \mathbb{N}$.

Classification of uniform measures in $\left(\mathbb{H}^{1}, d_{\mathbb{H}}\right)$

Ongoing project with V. Magnani and J. Tyson.

Marstrand's theorem in $\mathbb{H}^{n} \Longrightarrow$ there are no s-uniform measures for $s \notin \mathbb{N}$.

Conjecture

Let μ be a \bar{m}-uniform measure on \mathbb{H}. Then

- if $\bar{m}=1$, then $\mu=c_{\mu} \mathcal{H}^{1}\llcorner L$ for some horizontal line L,
- if $\bar{m}=2$, then $\mu=c_{\mu} \mathcal{H}^{2}\llcorner V$ for some vertical line V,
- if $\bar{m}=3$, then $\mu=c_{\mu} \mathcal{H}^{3}\llcorner W$ for some vertical plane W.

Classification of uniform measures in $\left(\mathbb{H}^{1}, d_{\mathbb{H}}\right)$

Ongoing project with V. Magnani and J. Tyson.

Marstrand's theorem in $\mathbb{H}^{n} \Longrightarrow$ there are no s-uniform measures for $s \notin \mathbb{N}$.

Conjecture

Let μ be a \bar{m}-uniform measure on \mathbb{H}. Then

- if $\bar{m}=1$, then $\mu=c_{\mu} \mathcal{H}^{1}\llcorner L$ for some horizontal line L, TRUE

Classification of uniform measures in $\left(\mathbb{H}^{1}, d_{\mathbb{H}}\right)$

Ongoing project with V. Magnani and J. Tyson.

Marstrand's theorem in $\mathbb{H}^{n} \Longrightarrow$ there are no s-uniform measures for $s \notin \mathbb{N}$.

Conjecture

Let μ be a \bar{m}-uniform measure on \mathbb{H}. Then

- if $\bar{m}=1$, then $\mu=c_{\mu} \mathcal{H}^{1}\llcorner L$ for some horizontal line L, TRUE
- if $\bar{m}=2$, then $\mu=c_{\mu} \mathcal{H}^{2}\llcorner V$ for some vertical line V, when $\operatorname{supp}(\mu)$ is contained in a vertical plane

Classification of uniform measures in $\left(\mathbb{H}^{1}, d_{\mathbb{H}}\right)$

Ongoing project with V. Magnani and J. Tyson.

Marstrand's theorem in $\mathbb{H}^{n} \Longrightarrow$ there are no s-uniform measures for $s \notin \mathbb{N}$.

Conjecture

Let μ be a \bar{m}-uniform measure on \mathbb{H}. Then

- if $\bar{m}=1$, then $\mu=c_{\mu} \mathcal{H}^{1}\llcorner L$ for some horizontal line L, TRUE
- if $\bar{m}=2$, then $\mu=c_{\mu} \mathcal{H}^{2}\llcorner V$ for some vertical line V, when $\operatorname{supp}(\mu)$ is contained in a vertical plane
- if $\bar{m}=3$, then $\mu=c_{\mu} \mathcal{H}^{3}\llcorner W$ for some vertical plane W when $\operatorname{supp}(\mu)$ is contained in a vertically ruled surface

Classification of uniform measures in $\left(\mathbb{H}^{1}, d_{\mathbb{H}}\right)$

Denote

$$
\Sigma=\Sigma_{(0)} \cup \cdots \cup \Sigma_{(m)}
$$

the stratification of the support $\Sigma=\operatorname{supp}(\mu)$ of a uniform measure μ into analytic submanifolds of dimensions between 0 and m.

Theorem

Let μ be a 2-uniform measure on \mathbb{H}. Then
(i) $\Sigma_{(1)}$ is a fully nonhorizontal curve.
(ii) the following geometric PDE is satisfied at all points of $\Sigma_{(1)}$:

$$
k_{\gamma} \circ \pi=\frac{3}{2} k_{\Sigma}^{0}
$$

$$
\text { for } \gamma=\pi \circ \Sigma
$$

$k_{\gamma}=$ the usual curvature of a plane curve
$k_{\Sigma}^{0}=$ the intrinsic curvature of the (nonhorizontal) curve $\Sigma \subset \mathbb{H}^{1}$

Classification of uniform measures in $\left(\mathbb{H}^{1}, d_{\mathbb{H}}\right)$

Theorem

Let μ be a 2-uniform measure on \mathbb{H}. Then
(i) $\Sigma_{(1)}$ is a fully nonhorizontal curve.
(ii) the following geometric PDE is satisfied at all points of $\Sigma_{(1)}$:

$$
\frac{2}{3} \tau(\dot{\Sigma})(\dot{x} \ddot{y}-\dot{y} \ddot{x})=|\dot{\gamma}|^{4}
$$

for $\gamma=\pi \circ \Sigma$.

Classification of uniform measures in $\left(\mathbb{H}^{1}, d_{\mathbb{H}}\right)$

Theorem

Let μ be a 3-uniform measure on \mathbb{H}. Then
(i) All points of in the top dimensional stratum Σ_{2} of Σ are noncharacteristic.
(ii) The following geometric PDE is satisfied at all points of Σ_{2} :

$$
\mathcal{H}_{0}^{2}-4 \mathcal{K}_{0}-\frac{5}{2} \mathcal{P}_{0}^{2}=0 .
$$

$\mathcal{H}_{0}=$ horizontal mean curvature
$\mathcal{P}_{0}=$ imaginary curvature
$\mathcal{K}_{0}=$ the horizontal Gauss curvature.

Curvatures

■ $x \in \Sigma$ is noncharacteristic if $T_{x} \Sigma \neq H_{x} \mathbb{H}$. At such points, there exists a unique curve $\gamma_{x}:(-\epsilon, \epsilon) \rightarrow \Sigma$, passing through x, s.t. $\gamma_{x}^{\prime}(0) \in H_{x} \mathbb{H} \cap T_{x} \Sigma=: H T_{x} \Sigma$.

$$
\mathcal{H}_{0}(x):=\kappa_{\pi \circ \gamma_{x}}(0)
$$

where κ_{c} denotes the curvature of a curve c in \mathbb{R}^{2}.

Curvatures

- $x \in \Sigma$ is noncharacteristic if $T_{x} \Sigma \neq H_{x} \mathbb{H}$. At such points, there exists a unique curve $\gamma_{x}:(-\epsilon, \epsilon) \rightarrow \Sigma$, passing through x, s.t. $\gamma_{x}^{\prime}(0) \in H_{x} \mathbb{H} \cap T_{x} \Sigma=: H T_{x} \Sigma$.

$$
\mathcal{H}_{0}(x):=\kappa_{\pi \circ \gamma_{x}}(0)
$$

where κ_{c} denotes the curvature of a curve c in \mathbb{R}^{2}.
■ The metric normal at a noncharacteristic point $x \in \Sigma$, denoted $\mathcal{N}_{x} \Sigma$, is the set of points $y \in \mathbb{H}$ such that $\operatorname{dist}_{c c}(y, \Sigma)=d_{c c}(y, x)$.

Curvatures

- $x \in \Sigma$ is noncharacteristic if $T_{x} \Sigma \neq H_{x} \mathbb{H}$. At such points, there exists a unique curve $\gamma_{x}:(-\epsilon, \epsilon) \rightarrow \Sigma$, passing through x, s.t. $\gamma_{x}^{\prime}(0) \in H_{x} \mathbb{H} \cap T_{x} \Sigma=: H T_{x} \Sigma$.

$$
\mathcal{H}_{0}(x):=\kappa_{\pi \circ \gamma_{x}}(0)
$$

where κ_{c} denotes the curvature of a curve c in \mathbb{R}^{2}.
■ The metric normal at a noncharacteristic point $x \in \Sigma$, denoted $\mathcal{N}_{x} \Sigma$, is the set of points $y \in \mathbb{H}$ such that $\operatorname{dist}_{c c}(y, \Sigma)=d_{c c}(y, x)$.

- The imaginary curvature of Σ at x, denoted $\mathcal{P}_{0}(x)$, is the horizontal curvature of $\mathcal{N}_{x} \Sigma$ at x.

Curvatures

- $x \in \Sigma$ is noncharacteristic if $T_{x} \Sigma \neq H_{x} \mathbb{H}$. At such points, there exists a unique curve $\gamma_{x}:(-\epsilon, \epsilon) \rightarrow \Sigma$, passing through x, s.t. $\gamma_{x}^{\prime}(0) \in H_{x} \mathbb{H} \cap T_{x} \Sigma=: H T_{x} \Sigma$.

$$
\mathcal{H}_{0}(x):=\kappa_{\pi \circ \gamma_{x}}(0)
$$

where κ_{c} denotes the curvature of a curve c in \mathbb{R}^{2}.
■ The metric normal at a noncharacteristic point $x \in \Sigma$, denoted $\mathcal{N}_{x} \Sigma$, is the set of points $y \in \mathbb{H}$ such that $\operatorname{dist}_{c c}(y, \Sigma)=d_{c c}(y, x)$.

- The imaginary curvature of Σ at x, denoted $\mathcal{P}_{0}(x)$, is the horizontal curvature of $\mathcal{N}_{x} \Sigma$ at x.
- The horizontal Gauss curvature of Σ at x, is defined as

$$
\mathcal{K}_{0}=\left\langle J \vec{n}_{0}, \nabla_{0}\left(\mathcal{P}_{0}\right)\right\rangle-\mathcal{P}_{0}^{2}
$$

where $J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

Questions/Problems

- Connections of densities to intrinsic notions of rectifiability: e.g. in the sense of Mattila, Serapioni,Serra-Cassano

Questions/Problems

- Connections of densities to intrinsic notions of rectifiability: e.g. in the sense of Mattila, Serapioni,Serra-Cassano Note: The t-axis, $T=\{(0,0, t): t \in \mathbb{R}\}$ is 2-uniform, while not intrinsically rectifiable.

Questions/Problems

■ Connections of densities to intrinsic notions of rectifiability: e.g. in the sense of Mattila, Serapioni,Serra-Cassano Note: The t-axis, $T=\{(0,0, t): t \in \mathbb{R}\}$ is 2-uniform, while not intrinsically rectifiable.

- Marstrand's theorem for other metrics? e.g. Carnot-Caratheodory metric $d_{c c}$, or $d_{\mathbb{H}}^{\infty}(p, q)=\left\|q^{-1} \cdot p\right\|_{\mathbb{H}}^{\infty}$ where $\|(z, t)\|_{\mathbb{H}}^{\infty}=\max \left\{|z|_{\mathbb{R}^{2 n}},|t|^{1 / 2}\right\}$

Questions/Problems

■ Connections of densities to intrinsic notions of rectifiability: e.g. in the sense of Mattila, Serapioni,Serra-Cassano Note: The t-axis, $T=\{(0,0, t): t \in \mathbb{R}\}$ is 2-uniform, while not intrinsically rectifiable.

- Marstrand's theorem for other metrics? e.g. Carnot-Caratheodory metric $d_{c c}$, or $d_{\mathbb{H}}^{\infty}(p, q)=\left\|q^{-1} \cdot p\right\|_{\mathbb{H}}^{\infty}$ where $\|(z, t)\|_{\mathbb{H}}^{\infty}=\max \left\{|z|_{\mathbb{R}^{2 n}},|t|^{1 / 2}\right\}$
■ Classification of uniform measures in $\left(\mathbb{H}^{1}, d_{\mathbb{H}}\right)$?

Proof of Kirchheim-Preiss theorem in \mathbb{H}^{n}

Let $x_{0} \in \operatorname{supp}(\mu)$ and define

$$
F(x, s)=\int_{\mathbb{R}^{2 n+1}}\left(\exp \left(-s\left\|x^{-1} \cdot z\right\|_{\mathbb{H}}^{4}\right)-\exp \left(-s\left\|x_{0}^{-1} \cdot z\right\|_{\mathbb{H}}^{4}\right)\right) d \mu(z)
$$

for $x \in \mathbb{H}^{n}$ and $s>0$.
$1 F(x, s)$ is well defined (does not depend on x_{0})
$2|F(x, s)|<\infty$ for all $x \in \mathbb{H}^{n}, s>0$
$3 F(x, s)=0$ for all $x \in \operatorname{supp}(\mu)$ and $s>0$
4 If $x \notin \operatorname{supp}(\mu)$, then $F(x, s) \neq 0$ for some $s>0$
$5 \operatorname{supp}(\mu)=\bigcap_{s>0}\{x: F(x, s)=0\}$
Fix $s>0$. Suffices to show that

$$
F_{1}(x)=\int_{\mathbb{R}^{2 n+1}} \exp \left(-s\left\|x^{-1} \cdot z\right\|_{\mathbb{H}}^{4}\right) d \mu(z)
$$

is real analytic.

Proof of Kirchheim-Preiss theorem in \mathbb{H}^{n}

$$
F_{1}(x)=\int_{\mathbb{R}^{2 n+1}} \exp \left(-s\left\|x^{-1} \cdot z\right\|_{\mathbb{H}}^{4}\right) d \mu(z)
$$

Define $\tilde{F}_{1}: \mathbb{C}^{2 n+1} \rightarrow \mathbb{C}$ for $w=\left(w_{1}, \ldots, w_{2 n+1}\right) \in \mathbb{C}^{2 n+1}$ as

$$
\begin{aligned}
\tilde{F}_{1}(w)=\int_{\mathbb{R}^{2 n+1}} \exp (-s[& \left(\sum_{i=1}^{2 n}\left(z_{i}-w_{i}\right)^{2}\right)^{2}+\left(z_{2 n+1}-w_{2 n+1}\right. \\
& \left.\left.\left.+2 \sum_{i=1}^{n}\left(w_{i} z_{i+n}-w_{i+n} z_{i}\right)\right)^{2}\right]\right) d \mu(z)
\end{aligned}
$$

- $\left|\tilde{F}_{1}(w)\right|<\infty$ for all $w \in \mathbb{C}^{2 n+1}$
- $\left.\tilde{F}_{1}\right|_{\mathbb{R}^{2 n+1}}=F_{1}$
- \tilde{F}_{1} is holomorphic on $\mathbb{C}^{2 n+1}$, so F_{1} is real analytic in $\mathbb{R}^{2 n+1}$.

