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Densities of measures

Let 1+ be a Radon measure on a metric space (X, d). The upper and
lower s-densities of p at x € X are

©™(u, x) = limsup M and €5 (i1, x) = lim inf n(B(x, 1))
r—0 r 0 s

If the limit exists, call it the s-density of 4 at x and denote it by ©°(y, x).
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Densities of measures

Let 1+ be a Radon measure on a metric space (X, d). The upper and
lower s-densities of p at x € X are

’
S

0" (u, x) = limsup p(B(xr)) and O (p, x) = liminf M
r—0 r 0 s

If the limit exists, call it the s-density of 4 at x and denote it by ©°(y, x).

m Lebesgue density theorem : A C R”, £L"-measurable —>

n(epn _ LH(B(O,l)), L"—ae inA
"L LA7)_{0 L' —ae inR"\ A
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s-dimensional Hausdorff measures H°

Let A C (X,d) be any set. Let s > 0 be any nonnegative real number
For any § > 0 cover A by sets Eq, E, ... of diameter <
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s-dimensional Hausdorff measures H°

Let A C (X,d) be any set. Let s > 0 be any nonnegative real number
For any 6 > 0 cover A by sets Eq, Es, ... of diameter < ¢
Weight each set in the cover by its diameter to power s
Optimize over all such covers

o0

H;5(A) :=inf {Z(diam E):AC U E;;diamE; < 5}
i=1 i=1

Use only finer and finer covers

HE(A) = lm H5(A)
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s-dimensional Hausdorff measures H°

Let A C (X,d) be any set. Let s > 0 be any nonnegative real number

For any § > 0 cover A by sets Eq, E, ... of diameter <
Weight each set in the cover by its diameter to power s
Optimize over all such covers

H;5(A) :=inf {Z(diam E):AC U E;;diamE; < 5}
i=1 i=1

Use only finer and finer covers

HE(A) = lm H5(A)

H? is called s-dimensional Hausdorff measure
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Hausdorff dimension

For any set A C (X, d), there is a unique number s > 0 such that
H?(A) = oo foralls < d
H¥(A) =0foralls >d

H3(A)

[ I

0 1 s
dimyA

The number s = dimy(A) where the transition happens is called
the Hausdorff dimension of A.
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Hausdorff dimension of Cantor sets

For all A € (0,1/2), the Cantor set C(\) has Hausdorff dimension

dimy C(\) = 11;‘(51( /)A) (0,1)

m dimpy C(1/4) = log(2)/log(4) = 0.5000000...

m dimpy C(1/3) =log(2)/log(3) = 0.6309292...

m dimpy C(9/20) = log(2)/log(20/9) = 0.8680532...
m dimy C(A) J OasA )0

m dimyC(\) T 1asA11/2
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Densities for Hausdorff measures

m If A C R", H°-measurable and H*(A) < oo,

1<O%(HLA,)<2°, H-aeinA
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Densities for Hausdorff measures

m If A C R", H°-measurable and H*(A) < oo,

1<O%(HLA,)<2°, H-aeinA

and
O (H°L_A,-) =0,H-a.e inR"\ A.
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Marstrand density theorem

Theorem (Marstrand 1954 and 1964)
Suppose for some s > 0, that there exists a Radon measure pv in R" s.t.

©°(, -) exists and is positive and finite in a set of positive p-measure. Then
seN.
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Marstrand density theorem

Theorem (Marstrand 1954 and 1964)

Suppose for some s > 0, that there exists a Radon measure pv in R" s.t.

©°(, -) exists and is positive and finite in a set of positive p-measure. Then
seN.

Sets with noninteger Hausdorff di-

mension are irregular at ‘generic’
points.
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Preiss density theorem

Theorem (Preiss 1987)

Let 1 be a Radon measure in R" such that the density ©™(, -), m € N, exists
and is positive and finite y a.e. Then supp(u) is m-rectifiable and
p << H"L supp(p).

E C R" is m-rectifiable if there exist countably many m-dimensional
Lipschitz graphs M; such that

H"™(E\ UM;) = 0.
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Preiss density theorem

Theorem (Preiss 1987)

Let 1 be a Radon measure in R" such that the density ©™(, -), m € N, exists
and is positive and finite y a.e. Then supp(u) is m-rectifiable and

p << H"L supp(p).

E C R" is m-rectifiable if there exist countably many m-dimensional
Lipschitz graphs M; such that
H"(E\ UM;) =0.

Eariler work by Besicovitch, Morse-Randolph, Moore.
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A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)
Let p be a Radon measure in R" and let s ¢ 7. Then

2 2
J Iy (MR — R ) () e [ [ (MOER) (),
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A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)
Let p be a Radon measure in R" and let s ¢ 7. Then

2 2
J Iy (MR — R ) () e [ [ (MOER) (),

m The theorem fails for n € N.
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A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)
Let p be a Radon measure in R" and let s ¢ 7. Then

2 2
J Iy (MR — R ) () e [ [ (MOER) (),

m The theorem fails for n € N.

.0\ 2
- “(85‘;’)) ? used to characterize Sobolev

m Wolff potentials,
spaces.
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A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)
Let p be a Radon measure in R" and let s ¢ 7. Then

2 2
B B(x,2
J e (oo — e e o) [ (0222) € )

m The theorem fails for n € N.

SN2 g .
- “(85‘;”)) d’—’ used to characterize Sobolev

m Wolff potentials,
spaces.

= (C, Garnett, Le, Tolsa) introduced A, (x, 1) = ”(Bgf’r)) — “(lzg;ﬁr)) to

give a characterization of uniform rectifiability using densities.

May 26, 2016 9/33



A lemma from the proof

Lemma (C, Prat, Tolsa)

Let p be a nontrivial Radon measure in R" and let s ¢ 7. Then there exist
xo € supp(u) and ro > 0 such that A} (xo, r0) # 0, that is

w(B(xo,70)) _, p(B(xo,2r9))
) (2r9)3
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m The proof depends on the Euclidean metric.
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) (2rp)®

m The proof depends on the Euclidean metric.

m (C, Rajala) True for s < 1 even when (X, d) is a complete metric
space.
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A lemma from the proof

Lemma (C, Prat, Tolsa)

Let p be a nontrivial Radon measure in R" and let s ¢ 7. Then there exist
xo € supp(u) and ro > 0 such that A} (xo, r0) # 0, that is

w(B(xo,70)) _, p(B(xo,2r9))
) (2rp)®

m The proof depends on the Euclidean metric.

m (C, Rajala) True for s < 1 even when (X, d) is a complete metric
space.

m Unknown for other metrics in R”.
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Results for other metric spaces

Several papers by A. Lorent about metrics in R” defined by centrally
symmetric convex polytopes. For example, he proves

m Marstrand’s theorem for d, and s < 2.
m locally 2-uniform measures in (R?, d,) are rectifiable.
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The Heisenberg group

B H" =R¥ 1 5 p=(z,t) = (x,y,t) = (X1, -, X Y15 - - -, Yy )
m(z,)x (2 V)= (z+ 2, t+ 1 4+ 2w(z,7))),

where w(z,z') =x-y —x"-y
m Horizontal distribution:

HpH" = span{X1(p), Y1(p), - - -, Xu(p), Yn(p)}

) )
Xi= o2
! 8X1+ ylat’
9 )
Y= oo
L

m Gauge (Kordnyi) metric:

dua(p,q) = lp~" * qllm,
m Dilations: §, : H" — H",r > 0,

0r(z,t) =

9 )
..,Xn—gxn—kz]/na
) 9

A
L T,

Iz, D)z = (J21* + )14

(rz, *t)

May 26,2016
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The geometry of H: Sub-Riemannian structure
Let X1, X5 be the left invariant vector fields
X1 = 8x1 + 2x28x3 and X, = 89(2 - 2x18x3.
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The geometry of H: Sub-Riemannian structure

Let X1, X5 be the left invariant vector fields

Xl = axl + 2x28x3 al’ld X2 == 6x2 - 2x]8x3.

m Motion is only allowed along the horizontal planes:

HyH' = span{X1(p), Xa(p)}-
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Balls in (H, dy)

dimy; (H) = 4

May 26, 2016 14 / 33



Marstrand’s theorem in the Heisenberg group

Recall, di(p,q) = llp~™" *qllz, ||z, 0)lm = (l2* + )1/
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Marstrand’s theorem in the Heisenberg group

Recall, du(p,q) = [lp~" *qllu,  [I(z6)]lw = (|2[* + £2)1/*
Theorem (C, Tyson)

Let 1 be a Radon measure in (H", dw). If the density ©j; (1, -) exists and is
positive and finite in a set of positive yi-measure, then s € N.
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Marstrand’s theorem in the Heisenberg group

Recall, du(p,q) = [lp~" *qllu,  [I(z6)]lw = (|2[* + £2)1/*
Theorem (C, Tyson)

Let 1 be a Radon measure in (H", dw). If the density ©j; (1, -) exists and is
positive and finite in a set of positive yi-measure, then s € N.

Remarks

m Marstrand’s proof is very Euclidean.
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Marstrand’s theorem in the Heisenberg group

Recall, du(p,q) = [lp~" *qllu,  [I(z6)]lw = (|2[* + £2)1/*
Theorem (C, Tyson)

Let 1 be a Radon measure in (H", dw). If the density ©j; (1, -) exists and is
positive and finite in a set of positive yi-measure, then s € N.

Remarks

m Marstrand’s proof is very Euclidean.

m Another proof, due to Kirchheim and Preiss, uses uniformly
distributed measures.
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Uniformly distributed and uniform measures

Definition
A Radon measure on a metric space (X, d) is called uniformly

distributed if
p(B(x,7)) = u(B(y, 1))
for all x,y € supp(u) and all r > 0.
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Uniformly distributed and uniform measures

Definition
A Radon measure on a metric space (X, d) is called uniformly

distributed if
p(B(x,7)) = u(B(y, 1))
for all x,y € supp(u) and all r > 0.

Definition
Lets > 0. A Radon measure on a metric space (X, d) is called
s-uniform if there exists some constant ¢ > 0 such that

w(B(x,r)) =cr

for all x € supp(p) and all 7 > 0.
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Kirchheim-Preiss Theorem

Theorem (Kirchheim-Preiss)

Let 1 be a uniformly distributed measure in R". Then supp(u) is a real
analytic variety.
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Kirchheim-Preiss Theorem

Theorem (Kirchheim-Preiss)

Let 1 be a uniformly distributed measure in R". Then supp(u) is a real
analytic variety.

Theorem (C, Tyson)

Let 1 be a uniformly distributed measure in (H", dy). Then supp(p) is a real
analytic variety in R¥'+1,
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Tangent measures and uniform measures in
Marstrand’s theorem

Let G be R" or H". Let iz be a Radon measure on G. Fora € G,r > 0,
denote the blow-ups of x from B(a,r) to B(0, 1) by

far(A) = plax (6-(A)) ,A CG.
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Tangent measures and uniform measures in
Marstrand’s theorem

Let G be R" or H". Let iz be a Radon measure on G. Fora € G,r > 0,
denote the blow-ups of x from B(a,r) to B(0, 1) by

as(A) = ulax (5,(A)) ,A C G.

v is a tangent measure of ;s ata € G if v is a Radon measure on G with
v(G) > 0 and there arec; > 0and r; > 0,i € N, such that r; — 0 and

Cilla,r; — v weakly as i — oo.
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Tangent measures and uniform measures in
Marstrand’s theorem

Let G be R" or H". Let iz be a Radon measure on G. Fora € G,r > 0,
denote the blow-ups of x from B(a,r) to B(0, 1) by

bag(A) = plax (5,(A)) ,A C G.

v is a tangent measure of ;s ata € G if v is a Radon measure on G with
v(G) > 0 and there arec; > 0and r; > 0,i € N, such that r; — 0 and

Ciftay; — v weakly as i — oo.
We denote by Tan(y, a) the set of all tangent measures of 1 at a.

Proposition

Let s > 0. Let u be a Radon measure such that 0 < ©%(u,-) < oo exists u-a.e.
in A C G. Then for pa.e. a € A, Tan(u, a), consists of s-uniform measures.
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0<©%u,-) <ocoexists y — a.e. in A C H"

«O» <« F»

«E» «E>»

DA™
May 26, 2016
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Marstrand theorem: scheme of the proof
0<©(p, ) <cexists u — a.e.in A C H"

y

3 s — uniform measure v
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3 s — uniform measure v
lL (Kirhchheim-Preiss Theorem)
supp(v) is a real analytic variety
lL (Lojasiewicz Theorem)
supp(v) is a countable union of real analytic submanifolds
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Marstrand theorem: scheme of the proof

0<©(p, ) <cexists u — a.e.in A C H"

y

3 s — uniform measure v
lL (Kirhchheim-Preiss Theorem)
supp(v) is a real analytic variety
lL (Lojasiewicz Theorem)
supp(v) is a countable union of real analytic submanifolds
lL (Gromov Theorem)
dimp (supp(v)) € N
i

s e N.
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Hausdorff dimension of submanifolds of H"

Theorem (Gromov)

Let X be an m-dimensional C1:1 submanifold in H", then

dimy(X) =m € {m,m+ 1}.
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Hausdorff dimension of submanifolds of H"

Theorem (Gromov)

Let X be an m-dimensional C1:1 submanifold in H", then

dimy(X) =m € {m,m+ 1}.

2+ 2
2a+ i1
2r

n+21
7+ 11

P B

7 n o+ 7 2n 2n+1 o
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Wolff potentials in (H", dy)

Lemma (C, Tyson)

Let p be a nontrivial Radon measure in (H", dy) and let s ¢ Z. Then there
exist xo € supp(u) and ro > 0 such that

p(B(xo,70)) , p(B(xo,2r0))
7 (2rg)s

£
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Wolff potentials in (H", dy)

Lemma (C, Tyson)

Let p be a nontrivial Radon measure in (H", dy) and let s ¢ Z. Then there
exist xo € supp(u) and ro > 0 such that

p(B(xo,10)) y 11(B(xo, 2r9))
7 (2ro)s

Theorem (C, Tyson)
Let p be a Radon measure in (H", dy) and let s ¢ 7. Then

2 )2
I (Mo — ) o) [ 4 )
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Uniformly distributed measures with bdd support

m (Kirchheim-Preiss) Bounded supports of Euclidean uniformly
distributed measures are contained in spheres
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Uniformly distributed measures with bdd support

m (Kirchheim-Preiss) Bounded supports of Euclidean uniformly
distributed measures are contained in spheres

m (C, Tyson) Bounded supports of uniformly distributed measures
on H" are algebraic varieties
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Uniformly distributed measures with bdd support

m (Kirchheim-Preiss) Bounded supports of Euclidean uniformly
distributed measures are contained in spheres

m (C, Tyson) Bounded supports of uniformly distributed measures
on H" are algebraic varieties
m (Kirchheim-Preiss) Uniformly distributed counting measures with

finite support in R? are supported on either the vertices of a
regular polygon, or two regular m-gons lying on a common circle
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Uniformly distributed measures with bdd support

m (Kirchheim-Preiss) Bounded supports of Euclidean uniformly
distributed measures are contained in spheres

m (C, Tyson) Bounded supports of uniformly distributed measures
on H" are algebraic varieties
m (Kirchheim-Preiss) Uniformly distributed counting measures with

finite support in R? are supported on either the vertices of a
regular polygon, or two regular m-gons lying on a common circle

m Characterization of uniformly distributed counting measures with
finite support in H' is open.
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Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if d(x,y) is constant
forallx,y € A, x # y.

m Counting measure is uniformly distributed on each equilateral set
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Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if d(x,y) is constant
forallx,y € A, x # y.

m Counting measure is uniformly distributed on each equilateral set
m (C, Tyson) Characterization equilateral triangles in (H, dg). Such
triangles fall into three distinct classes:

two vertices lie on a vertical line,
two vertices lie on a horizontal line,
no two vertices lie on either a horizontal or a vertical line.

May 26,2016 23 /33



Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if d(x,y) is constant
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m (C, Tyson) Characterization equilateral triangles in (H, dg). Such
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two vertices lie on a vertical line,
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no two vertices lie on either a horizontal or a vertical line.

m We declined to characterize equilateral 4 point sets (probably
tractable)
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Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if d(x,y) is constant
forallx,y € A, x # y.

m Counting measure is uniformly distributed on each equilateral set

m (C, Tyson) Characterization equilateral triangles in (H, dg). Such
triangles fall into three distinct classes:

two vertices lie on a vertical line,
two vertices lie on a horizontal line,
no two vertices lie on either a horizontal or a vertical line.

m We declined to characterize equilateral 4 point sets (probably
tractable)

m Unknown if there exist equilateral 5 point subsets of (H', dy)!
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Uniform measures in (R", dr)

m (Preiss) For m = 1,2 all m-uniform measures are m-flat; a measure
pis m-flatif p = c,H"L_V,V € G(n,m).
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Uniform measures in (R", dr)

m (Preiss) For m = 1,2 all m-uniform measures are m-flat; a measure
pis m-flatif p = c,H"L_V,V € G(n,m).

m (Preiss) The light cone C = {x € R* : x? = x5 + x5 + x3} is
3-uniform!
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Uniform measures in (R", dr)

m (Preiss) For m = 1,2 all m-uniform measures are m-flat; a measure
pis m-flatif p = c,H"L_V,V € G(n,m).

m (Preiss) The light cone C = {x € R* : x? = x5 + x5 + x3} is
3-uniform!

m (Preiss-Kowalski) Every (n — 1)-uniform measure in R” is either
(n — 1)-flat or is a constant multiple of #"~! on some isometric
copy of C x R4,
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Uniform measures in (R", dr)

m (Preiss) For m = 1,2 all m-uniform measures are m-flat; a measure
pis m-flatif p = c,H"L_V,V € G(n,m).

m (Preiss) The light cone C = {x € R* : x? = x5 + x5 + x3} is
3-uniform!

m (Preiss-Kowalski) Every (n — 1)-uniform measure in R” is either
(n — 1)-flat or is a constant multiple of #"~! on some isometric
copy of C x R4,

m Classification open for3 <m <n —1.
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Classification of uniform measures in (H!, dy)
Ongoing project with V. Magnani and J. Tyson.

Marstrand’s theorem in H? == there are no s-uniform measures for
s ¢ N.
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Classification of uniform measures in (H!, dy)

Ongoing project with V. Magnani and J. Tyson.

Marstrand’s theorem in H? == there are no s-uniform measures for
s ¢ N.

Conjecture

Let 1 be a m-uniform measure on H. Then
mifm=1,then = C“’Hl L_L for some horizontal line L,
mifm =2, then yp = C,ﬂ-tz LV for some vertical line V,
m if m = 3, then = ¢, H3L_ W for some vertical plane W.
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Classification of uniform measures in (H!, dy)
Ongoing project with V. Magnani and J. Tyson.

Marstrand’s theorem in H? = there are no s-uniform measures for
s ¢ N.

Conjecture
Let p be a m-uniform measure on H. Then
mifm=1,then u = c,[H1 L_L for some horizontal line L, TRUE

m ifm =2, then p = ¢, H?L_V for some vertical line V, when supp(p) is
contained in a vertical plane

m if m = 3, then = ¢, H3L_ W for some vertical plane W when supp (/1)
is contained in a vertically ruled surface

May 26, 2016 26 /33



Classification of uniform measures in (H!, dy)
Denote
E:E(O)U-"Uz(m),

the stratification of the support ¥ = supp(x) of a uniform measure p
into analytic submanifolds of dimensions between 0 and m.

Theorem
Let 1 be a 2-uniform measure on H. Then
(i) %) is a fully nonhorizontal curve.
(ii) the following geometric PDE is satisfied at all points of ¥qy:

3
kyom= Ek%’

fory=moX

k, = the usual curvature of a plane curve

k% = the intrinsic curvature of the (nonhorizontal) curve ¥ ¢ H!
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Classification of uniform measures in (H!, dy)

Theorem
Let p be a 2-uniform measure on H. Then
(i) %) is a fully nonhorizontal curve.
(ii) the following geometric PDE is satisfied at all points of %y

S7(5) (i — §) = 3I*

fory=moX.
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Classification of uniform measures in (H!, dy)

Theorem
Let p be a 3-uniform measure on H. Then

(i) All points of in the top dimensional stratum ¥, of X are
noncharacteristic.

(ii) The following geometric PDE is satisfied at all points of ¥:

HE — 4K — gwg =0.

Ho = horizontal mean curvature
Po = imaginary curvature
Ko = the horizontal Gauss curvature.
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Curvatures

m x € X is noncharacteristic if T, # Hy,H. At such points, there exists

a unique curve 7y : (—¢, €) = ¥, passing through x, s.t
7%(0) € H{HN Ty =: HT, 3.

Ho (%) := Fnoy, (0),

where k. denotes the curvature of a curve ¢ in R2.
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Curvatures

m x € X is noncharacteristic if T, # Hy,H. At such points, there exists
a unique curve 7, : (—¢, €) — X, passing through x, s.t.

Ho (%) := Fnoy, (0),

where k. denotes the curvature of a curve ¢ in R2.

m The metric normal at a noncharacteristic point x € 3, denoted N, X,
is the set of points y € H such that dist..(y, X) = de(y, x).

m The imaginary curvature of ¥ at x, denoted Py(x), is the horizontal
curvature of .Y at x.

m The horizontal Gauss curvature of ¥ at x, is defined as

Ko = (Jito, Vo(Po)) — P§

where | = <_01 é)
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Questions/Problems

m Connections of densities to intrinsic notions of rectifiability:
e.g. in the sense of Mattila, Serapioni,Serra-Cassano
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Proof of Kirchheim-Preiss theorem in H"

Let xg € supp(p) and define

Fns) = [ (exp(oslix -2l — expl—sliy -2l1) du(z).

forx € H" and s > 0.
F(x,s) is well defined (does not depend on x)
|F(x,s)| < oo forallx € H",s >0
F(x,s) =0forall x € supp(p) ands > 0
If x ¢ supp(n), then F(x,s) # 0 for some s > 0
supp(u) = Nssofx : F(x,5) = 0}

Fix s > 0. Suffices to show that

mmz/ exp(—slx - z[4) dyu(z)
R2n+1

is real analytic.
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Proof of Kirchheim-Preiss theorem in H"

Fi(x) = / exp(—s|x - zl|4) du(z)
R2n+1

Define F; : C¥"t1 — Cforw = (w1, ..., wip1) € C¥ 1 as

2n

F(w) = /Rzﬂ+1 exp(—s{(Z(zi — wi)Z)2 + (zon41 — Want1

i=1

n
2
+2) (WiZisn — WisnZi)) })dﬂ(z)-
i=1
m |Fy(w)| < oo for all w e C2++!
] F~1|R2n+1 = Fl

m F; is holomorphic on C*'*1, so Fj is real analytic in R?"+1.

May 26,2016

33/33



