Densities and uniformly distributed measures in the Heisenberg group

Vasilis Chousionis University of Connecticut

May 26, 2016

Densities of measures

Let μ be a Radon measure on a metric space (X, d). The upper and lower s-densities of μ at $x \in X$ are

$$\Theta^{*s}(\mu,x) = \limsup_{r \to 0} \frac{\mu(B(x,r))}{r^s} \text{ and } \Theta^s_*(\mu,x) = \liminf_{r \to 0} \frac{\mu(B(x,r))}{r^s}.$$

If the limit exists, call it the *s*-density of μ at x and denote it by $\Theta^s(\mu, x)$.

Densities of measures

Let μ be a Radon measure on a metric space (X, d). The upper and lower s-densities of μ at $x \in X$ are

$$\Theta^{*s}(\mu,x) = \limsup_{r \to 0} \frac{\mu(B(x,r))}{r^s} \text{ and } \Theta^s_*(\mu,x) = \liminf_{r \to 0} \frac{\mu(B(x,r))}{r^s}.$$

If the limit exists, call it the *s*-density of μ at x and denote it by $\Theta^s(\mu, x)$.

Lebesgue density theorem : $A \subset \mathbb{R}^n$, \mathcal{L}^n -measurable \Longrightarrow

$$\Theta^{n}(\mathcal{L}^{n} \sqcup A, \cdot) = \begin{cases} \mathcal{L}^{n}(B(0, 1)), & \mathcal{L}^{n} - \text{a.e. in } A \\ 0 & \mathcal{L}^{n} - \text{a.e. in } \mathbb{R}^{n} \setminus A \end{cases}$$

Let $A \subset (X, d)$ be any set. Let $s \ge 0$ be any nonnegative real number

1 For any $\delta > 0$ cover A by sets E_1, E_2, \ldots of diameter $\leq \delta$

Let $A \subset (X, d)$ be any set. Let $s \ge 0$ be any nonnegative real number

- **1** For any $\delta > 0$ cover *A* by sets E_1, E_2, \ldots of diameter $\leq \delta$
- f 2 Weight each set in the cover by its diameter to power s

Let $A \subset (X, d)$ be any set. Let $s \ge 0$ be any nonnegative real number

- **1** For any $\delta > 0$ cover A by sets E_1, E_2, \ldots of diameter $\leq \delta$
- 2 Weight each set in the cover by its diameter to power s
- 3 Optimize over all such covers

$$\mathcal{H}^{s}_{\delta}(A) := \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam} E_{i})^{s} : A \subset \bigcup_{i=1}^{\infty} E_{i}; \operatorname{diam} E_{i} \leq \delta \right\}$$

4 Use only finer and finer covers

$$\mathcal{H}^s(A) := \lim_{\delta \to 0} \mathcal{H}^s_{\delta}(A)$$

Let $A \subset (X, d)$ be any set. Let $s \ge 0$ be any nonnegative real number

- **1** For any $\delta > 0$ cover A by sets E_1, E_2, \ldots of diameter $\leq \delta$
- 2 Weight each set in the cover by its diameter to power s
- 3 Optimize over all such covers

$$\mathcal{H}^{s}_{\delta}(A) := \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam} E_{i})^{s} : A \subset \bigcup_{i=1}^{\infty} E_{i}; \operatorname{diam} E_{i} \leq \delta \right\}$$

4 Use only finer and finer covers

$$\mathcal{H}^s(A) := \lim_{\delta \to 0} \mathcal{H}^s_{\delta}(A)$$

 \mathcal{H}^s is called s-dimensional Hausdorff measure

Hausdorff dimension

For any set $A \subset (X, d)$, there is a unique number $s \ge 0$ such that

- $\mathcal{H}^s(A) = 0 \text{ for all } s > d$

The number $s = \dim_H(A)$ where the transition happens is called the Hausdorff dimension of A.

Hausdorff dimension of Cantor sets

For all $\lambda \in (0, 1/2)$, the Cantor set $C(\lambda)$ has Hausdorff dimension

$$\dim_H C(\lambda) = \frac{\log(2)}{\log(1/\lambda)} \in (0,1)$$

$$\dim_H C(1/4) = \log(2)/\log(4) = 0.5000000...$$

$$\dim_H C(1/3) = \log(2)/\log(3) = 0.6309292...$$

$$dim_H C(9/20) = \log(2)/\log(20/9) = 0.8680532...$$

■ dim
$$_H C(\lambda) \downarrow 0$$
 as $\lambda \downarrow 0$

$$\blacksquare$$
 dim_H $C(\lambda) \uparrow 1$ as $\lambda \uparrow 1/2$

Densities for Hausdorff measures

■ If $A \subset \mathbb{R}^n$, \mathcal{H}^s -measurable and $\mathcal{H}^s(A) < \infty$,

$$1 \le \Theta^{*s}(\mathcal{H}^s \sqcup A, \cdot) \le 2^s$$
, \mathcal{H}^s -a.e. in A

Densities for Hausdorff measures

■ If $A \subset \mathbb{R}^n$, \mathcal{H}^s -measurable and $\mathcal{H}^s(A) < \infty$,

$$1 \le \Theta^{*s}(\mathcal{H}^s \sqcup A, \cdot) \le 2^s$$
, \mathcal{H}^s -a.e. in A

and

$$\Theta^s(\mathcal{H}^s \, \sqsubseteq A, \cdot) = 0, \mathcal{H}^s$$
-a.e. in $\mathbb{R}^n \setminus A$.

Marstrand density theorem

Theorem (Marstrand 1954 and 1964)

Suppose for some s > 0, that there exists a Radon measure μ in \mathbb{R}^n s.t. $\Theta^s(\mu, \cdot)$ exists and is positive and finite in a set of positive μ -measure. Then $s \in \mathbb{N}$.

Marstrand density theorem

Theorem (Marstrand 1954 and 1964)

Suppose for some s > 0, that there exists a Radon measure μ in \mathbb{R}^n s.t. $\Theta^s(\mu, \cdot)$ exists and is positive and finite in a set of positive μ -measure. Then $s \in \mathbb{N}$.

Sets with noninteger Hausdorff dimension are irregular at 'generic' points.

Preiss density theorem

Theorem (Preiss 1987)

Let μ be a Radon measure in \mathbb{R}^n such that the density $\Theta^m(\mu, \cdot)$, $m \in \mathbb{N}$, exists and is positive and finite μ a.e. Then $\operatorname{supp}(\mu)$ is m-rectifiable and $\mu \ll \mathcal{H}^m \sqcup \operatorname{supp}(\mu)$.

 $E \subset \mathbb{R}^n$ is *m-rectifiable* if there exist countably many *m*-dimensional Lipschitz graphs M_i such that

$$\mathcal{H}^m(E\setminus \cup M_i)=0.$$

Preiss density theorem

Theorem (Preiss 1987)

Let μ be a Radon measure in \mathbb{R}^n such that the density $\Theta^m(\mu, \cdot)$, $m \in \mathbb{N}$, exists and is positive and finite μ a.e. Then $\operatorname{supp}(\mu)$ is m-rectifiable and $\mu \ll \mathcal{H}^m \sqcup \operatorname{supp}(\mu)$.

 $E \subset \mathbb{R}^n$ is *m-rectifiable* if there exist countably many *m*-dimensional Lipschitz graphs M_i such that

$$\mathcal{H}^m(E\setminus \cup M_i)=0.$$

Eariler work by Besicovitch, Morse-Randolph, Moore.

Theorem (C, Prat, Tolsa)

Let μ be a Radon measure in \mathbb{R}^n and let $s \notin \mathbb{Z}$. Then

$$\int \int_0^\infty \left(\frac{\mu(B(x,r))}{r^s} - \frac{\mu(B(x,2r))}{(2r)^s} \right)^2 \frac{dr}{r} d\mu(x) \approx \int \int_0^\infty \left(\frac{\mu(B(x,r))}{r^s} \right)^2 \frac{dr}{r} d\mu(x).$$

Theorem (C, Prat, Tolsa)

Let μ be a Radon measure in \mathbb{R}^n and let $s \notin \mathbb{Z}$. Then

$$\int \int_0^\infty \left(\frac{\mu(B(x,r))}{r^s} - \frac{\mu(B(x,2r))}{(2r)^s} \right)^2 \frac{dr}{r} d\mu(x) \approx \int \int_0^\infty \left(\frac{\mu(B(x,r))}{r^s} \right)^2 \frac{dr}{r} d\mu(x).$$

■ The theorem fails for $n \in \mathbb{N}$.

Theorem (C, Prat, Tolsa)

Let μ be a Radon measure in \mathbb{R}^n and let $s \notin \mathbb{Z}$. Then

$$\int \int_0^\infty \left(\frac{\mu(B(x,r))}{r^s} - \frac{\mu(B(x,2r))}{(2r)^s} \right)^2 \frac{dr}{r} d\mu(x) \approx \int \int_0^\infty \left(\frac{\mu(B(x,r))}{r^s} \right)^2 \frac{dr}{r} d\mu(x).$$

- The theorem fails for $n \in \mathbb{N}$.
- Wolff potentials, $\int_0^\infty \frac{\mu(B(x,r))^2}{r^{2s}} \frac{dr}{r}$ used to characterize Sobolev spaces.

Theorem (C, Prat, Tolsa)

Let μ be a Radon measure in \mathbb{R}^n and let $s \notin \mathbb{Z}$. Then

$$\int \int_0^\infty \left(\frac{\mu(B(x,r))}{r^s} - \frac{\mu(B(x,2r))}{(2r)^s} \right)^2 \frac{dr}{r} d\mu(x) \approx \int \int_0^\infty \left(\frac{\mu(B(x,r))}{r^s} \right)^2 \frac{dr}{r} d\mu(x).$$

- The theorem fails for $n \in \mathbb{N}$.
- Wolff potentials, $\int_0^\infty \frac{\mu(B(x,r))^2}{r^{2s}} \frac{dr}{r}$ used to characterize Sobolev spaces.
- (C, Garnett, Le, Tolsa) introduced $\Delta_{\mu}^{s}(x,r) = \frac{\mu(B(x,r))}{r^{s}} \frac{\mu(B(x,2r))}{(2r)^{s}}$ to give a characterization of **uniform rectifiability** using densities.

Lemma (C, Prat, Tolsa)

Let μ be a nontrivial Radon measure in \mathbb{R}^n and let $s \notin \mathbb{Z}$. Then there exist $x_0 \in \text{supp}(\mu)$ and $r_0 > 0$ such that $\Delta^s_{\mu}(x_0, r_0) \neq 0$, that is

$$\frac{\mu(B(x_0, r_0))}{r_0^s} \neq \frac{\mu(B(x_0, 2r_0))}{(2r_0)^s}.$$

Lemma (C, Prat, Tolsa)

Let μ be a nontrivial Radon measure in \mathbb{R}^n and let $s \notin \mathbb{Z}$. Then there exist $x_0 \in \text{supp}(\mu)$ and $r_0 > 0$ such that $\Delta^s_{\mu}(x_0, r_0) \neq 0$, that is

$$\frac{\mu(B(x_0, r_0))}{r_0^s} \neq \frac{\mu(B(x_0, 2r_0))}{(2r_0)^s}.$$

■ The proof depends on the Euclidean metric.

Lemma (C, Prat, Tolsa)

Let μ be a nontrivial Radon measure in \mathbb{R}^n and let $s \notin \mathbb{Z}$. Then there exist $x_0 \in \text{supp}(\mu)$ and $r_0 > 0$ such that $\Delta^s_{\mu}(x_0, r_0) \neq 0$, that is

$$\frac{\mu(B(x_0, r_0))}{r_0^s} \neq \frac{\mu(B(x_0, 2r_0))}{(2r_0)^s}.$$

- The proof depends on the Euclidean metric.
- (C, Rajala) True for s < 1 even when (X, d) is a complete metric space.

Lemma (C, Prat, Tolsa)

Let μ be a nontrivial Radon measure in \mathbb{R}^n and let $s \notin \mathbb{Z}$. Then there exist $x_0 \in \text{supp}(\mu)$ and $r_0 > 0$ such that $\Delta^s_{\mu}(x_0, r_0) \neq 0$, that is

$$\frac{\mu(B(x_0, r_0))}{r_0^s} \neq \frac{\mu(B(x_0, 2r_0))}{(2r_0)^s}.$$

- The proof depends on the Euclidean metric.
- (C, Rajala) True for s < 1 even when (X, d) is a complete metric space.
- Unknown for other metrics in \mathbb{R}^n .

Results for other metric spaces

Several papers by A. Lorent about metrics in \mathbb{R}^n defined by centrally symmetric convex polytopes. For example, he proves

- Marstrand's theorem for d_{∞} and $s \leq 2$.
- locally 2-uniform measures in (\mathbb{R}^3, d_∞) are rectifiable.

May 26, 2016 11 / 33

The Heisenberg group

- $\blacksquare \mathbb{H}^n = \mathbb{R}^{2n+1} \ni p = (z,t) = (x,y,t) = (x_1,\ldots,x_n,y_1,\ldots,y_n,t)$
- $(z,t)*(z',t') = (z+z',t+t'+2\omega(z,z')),$ where $\omega(z,z') = x \cdot y' - x' \cdot y$
- Horizontal distribution:

$$H_{p}\mathbb{H}^{n} = \operatorname{span}\{X_{1}(p), Y_{1}(p), \dots, X_{n}(p), Y_{n}(p)\}$$

$$X_{1} = \frac{\partial}{\partial x_{1}} + 2y_{1}\frac{\partial}{\partial t}, \dots, X_{n} = \frac{\partial}{\partial x_{n}} + 2y_{n}\frac{\partial}{\partial t}$$

$$Y_{1} = \frac{\partial}{\partial y_{1}} - 2x_{1}\frac{\partial}{\partial t}, \dots, Y_{n} = \frac{\partial}{\partial y_{n}} - 2x_{n}\frac{\partial}{\partial t}$$

■ Gauge (Korányi) metric:

$$d_{\mathbb{H}}(p,q) = \|p^{-1} * q\|_{\mathbb{H}}, \quad \|(z,t)\|_{\mathbb{H}} = (|z|^4 + t^2)^{1/4}$$

■ Dilations: $\delta_r : \mathbb{H}^n \to \mathbb{H}^n, r > 0$,

$$\delta_r(z,t) = (rz, r^2t)$$

The geometry of H: Sub-Riemannian structure

Let X_1, X_2 be the left invariant vector fields

$$X_1 = \partial_{x_1} + 2x_2\partial_{x_3}$$
 and $X_2 = \partial_{x_2} - 2x_1\partial_{x_3}$.

The geometry of H: Sub-Riemannian structure

Let X_1, X_2 be the left invariant vector fields

$$X_1 = \partial_{x_1} + 2x_2\partial_{x_3}$$
 and $X_2 = \partial_{x_2} - 2x_1\partial_{x_3}$.

■ Motion is only allowed along the horizontal planes:

$$H_p\mathbb{H}^1 = \operatorname{span}\{X_1(p), X_2(p)\}.$$

May 26, 2016

13 / 33

Balls in (\mathbb{H}, d_H)

 $\dim_H(\mathbb{H})=4$

Recall,
$$d_{\mathbb{H}}(p,q) = ||p^{-1} * q||_{\mathbb{H}}, \quad ||(z,t)||_{\mathbb{H}} = (|z|^4 + t^2)^{1/4}$$

Recall,
$$d_{\mathbb{H}}(p,q) = \|p^{-1} * q\|_{\mathbb{H}}, \quad \|(z,t)\|_{\mathbb{H}} = (|z|^4 + t^2)^{1/4}$$

Theorem (C, Tyson)

Let μ be a Radon measure in $(\mathbb{H}^n, d_{\mathbb{H}})$. If the density $\Theta^s_{\mathbb{H}}(\mu, \cdot)$ exists and is positive and finite in a set of positive μ -measure, then $s \in \mathbb{N}$.

Recall,
$$d_{\mathbb{H}}(p,q) = \|p^{-1} * q\|_{\mathbb{H}}, \quad \|(z,t)\|_{\mathbb{H}} = (|z|^4 + t^2)^{1/4}$$

Theorem (C, Tyson)

Let μ be a Radon measure in $(\mathbb{H}^n, d_{\mathbb{H}})$. If the density $\Theta^s_{\mathbb{H}}(\mu, \cdot)$ exists and is positive and finite in a set of positive μ -measure, then $s \in \mathbb{N}$.

Remarks

■ Marstrand's proof is very Euclidean.

Recall,
$$d_{\mathbb{H}}(p,q) = \|p^{-1} * q\|_{\mathbb{H}}, \quad \|(z,t)\|_{\mathbb{H}} = (|z|^4 + t^2)^{1/4}$$

Theorem (C, Tyson)

Let μ be a Radon measure in $(\mathbb{H}^n, d_{\mathbb{H}})$. If the density $\Theta^s_{\mathbb{H}}(\mu, \cdot)$ exists and is positive and finite in a set of positive μ -measure, then $s \in \mathbb{N}$.

Remarks

- Marstrand's proof is very Euclidean.
- Another proof, due to Kirchheim and Preiss, uses *uniformly distributed measures*.

Uniformly distributed and uniform measures

Definition

A Radon measure on a metric space (X, d) is called uniformly distributed if

$$\mu(B(x,r)) = \mu(B(y,r))$$

for all $x, y \in \text{supp}(\mu)$ and all r > 0.

Uniformly distributed and uniform measures

Definition

A Radon measure on a metric space (X, d) is called uniformly distributed if

$$\mu(B(x,r)) = \mu(B(y,r))$$

for all $x, y \in \text{supp}(\mu)$ and all r > 0.

Definition

Let s > 0. A Radon measure on a metric space (X, d) is called s-uniform if there exists some constant c > 0 such that

$$\mu(B(x,r)) = cr^s$$

for all $x \in \text{supp}(\mu)$ and all r > 0.

Kirchheim-Preiss Theorem

Theorem (Kirchheim-Preiss)

Let μ be a uniformly distributed measure in \mathbb{R}^n . Then $supp(\mu)$ is a real analytic variety.

Kirchheim-Preiss Theorem

Theorem (Kirchheim-Preiss)

Let μ be a uniformly distributed measure in \mathbb{R}^n . Then $supp(\mu)$ is a real analytic variety.

Theorem (C, Tyson)

Let μ be a uniformly distributed measure in $(\mathbb{H}^n, d_{\mathbb{H}})$. Then $supp(\mu)$ is a real analytic variety in \mathbb{R}^{2n+1} .

Let \mathbb{G} be \mathbb{R}^n or \mathbb{H}^n . Let μ be a Radon measure on \mathbb{G} . For $a \in \mathbb{G}, r > 0$, denote the blow-ups of μ from B(a,r) to B(0,1) by

$$\mu_{a,r}(A) = \mu(a * (\delta_r(A)), A \subset \mathbb{G}.$$

Let \mathbb{G} be \mathbb{R}^n or \mathbb{H}^n . Let μ be a Radon measure on \mathbb{G} . For $a \in \mathbb{G}, r > 0$, denote the blow-ups of μ from B(a,r) to B(0,1) by

$$\mu_{a,r}(A) = \mu(a * (\delta_r(A)), A \subset \mathbb{G}.$$

 ν is a **tangent measure** of μ at $a \in \mathbb{G}$ if ν is a Radon measure on \mathbb{G} with $\nu(\mathbb{G}) > 0$ and there are $c_i > 0$ and $r_i > 0$, $i \in \mathbb{N}$, such that $r_i \to 0$ and

$$c_i\mu_{a,r_i} \to \nu$$
 weakly as $i \to \infty$.

Let \mathbb{G} be \mathbb{R}^n or \mathbb{H}^n . Let μ be a Radon measure on \mathbb{G} . For $a \in \mathbb{G}, r > 0$, denote the blow-ups of μ from B(a,r) to B(0,1) by

$$\mu_{a,r}(A) = \mu(a * (\delta_r(A)), A \subset \mathbb{G}.$$

 ν is a **tangent measure** of μ at $a \in \mathbb{G}$ if ν is a Radon measure on \mathbb{G} with $\nu(\mathbb{G}) > 0$ and there are $c_i > 0$ and $r_i > 0$, $i \in \mathbb{N}$, such that $r_i \to 0$ and

$$c_i \mu_{a,r_i} \to \nu$$
 weakly as $i \to \infty$.

We denote by $Tan(\mu, a)$ the set of all tangent measures of μ at a.

Let \mathbb{G} be \mathbb{R}^n or \mathbb{H}^n . Let μ be a Radon measure on \mathbb{G} . For $a \in \mathbb{G}, r > 0$, denote the blow-ups of μ from B(a,r) to B(0,1) by

$$\mu_{a,r}(A) = \mu(a * (\delta_r(A)), A \subset \mathbb{G}.$$

 ν is a **tangent measure** of μ at $a \in \mathbb{G}$ if ν is a Radon measure on \mathbb{G} with $\nu(\mathbb{G}) > 0$ and there are $c_i > 0$ and $r_i > 0$, $i \in \mathbb{N}$, such that $r_i \to 0$ and

$$c_i \mu_{a,r_i} \to \nu$$
 weakly as $i \to \infty$.

We denote by $Tan(\mu, a)$ the set of all tangent measures of μ at a.

Proposition

Let s > 0. Let μ be a Radon measure such that $0 < \Theta^s(\mu, \cdot) < \infty$ exists μ -a.e. in $A \subset \mathbb{G}$. Then for μ a.e. $a \in A$, $Tan(\mu, a)$, consists of s-uniform measures.

$$0 < \Theta^s(\mu, \cdot) < \infty \text{ exists } \mu - \text{ a.e. in } A \subset \mathbb{H}^n$$

$$0 < \Theta^s(\mu, \cdot) < \infty \text{ exists } \mu - \text{ a.e. in } A \subset \mathbb{H}^n$$

$$\downarrow \downarrow$$

 $\exists s - \text{uniform measure } \nu$

$$0<\Theta^s(\mu,\cdot)<\infty$$
 exists $\mu-$ a.e. in $A\subset\mathbb{H}^n$
$$\downarrow \hspace{1cm} \exists \quad s- \text{uniform measure } \nu$$

$$\downarrow \hspace{1cm} \downarrow \hspace{1cm} \text{(Kirhchheim-Preiss Theorem)}$$
 $\sup p(\nu)$ is a real analytic variety

 $\operatorname{supp}(\nu)$ is a countable union of real analytic submanifolds

Hausdorff dimension of submanifolds of \mathbb{H}^n

Theorem (Gromov)

Let Σ be an m-dimensional $C^{1,1}$ submanifold in \mathbb{H}^n , then

$$\dim_H(\Sigma) = \bar{m} \in \{m, m+1\}.$$

Hausdorff dimension of submanifolds of \mathbb{H}^n

Theorem (Gromov)

Let Σ be an m-dimensional $C^{1,1}$ submanifold in \mathbb{H}^n , then

$$\dim_H(\Sigma) = \bar{m} \in \{m, m+1\}.$$

Wolff potentials in $(\mathbb{H}^n, d_{\mathbb{H}})$

Lemma (C, Tyson)

Let μ be a nontrivial Radon measure in $(\mathbb{H}^n, d_{\mathbb{H}})$ and let $s \notin \mathbb{Z}$. Then there exist $x_0 \in \text{supp}(\mu)$ and $r_0 > 0$ such that

$$\frac{\mu(B(x_0, r_0))}{r_0^s} \neq \frac{\mu(B(x_0, 2r_0))}{(2r_0)^s}.$$

Wolff potentials in $(\mathbb{H}^n, d_{\mathbb{H}})$

Lemma (C, Tyson)

Let μ be a nontrivial Radon measure in $(\mathbb{H}^n, d_{\mathbb{H}})$ and let $s \notin \mathbb{Z}$. Then there exist $x_0 \in \text{supp}(\mu)$ and $r_0 > 0$ such that

$$\frac{\mu(B(x_0,r_0))}{r_0^s} \neq \frac{\mu(B(x_0,2r_0))}{(2r_0)^s}.$$

Theorem (C, Tyson)

Let μ be a Radon measure in $(\mathbb{H}^n, d_{\mathbb{H}})$ and let $s \notin \mathbb{Z}$. Then

$$\int \int_0^{\infty} \left(\frac{\mu(B(x,r))}{r^s} - \frac{\mu(B(x,2r))}{(2r)^s} \right)^2 \frac{dr}{r} d\mu(x) \approx \int \int_0^{\infty} \frac{\mu(B(x,r))^2}{r^{2s}} \frac{dr}{r} d\mu(x).$$

■ (Kirchheim-Preiss) Bounded supports of Euclidean uniformly distributed measures are contained in spheres

- (Kirchheim-Preiss) Bounded supports of Euclidean uniformly distributed measures are contained in spheres
- (C, Tyson) Bounded supports of uniformly distributed measures on \mathbb{H}^n are algebraic varieties

- (Kirchheim-Preiss) Bounded supports of Euclidean uniformly distributed measures are contained in spheres
- (C, Tyson) Bounded supports of uniformly distributed measures on \mathbb{H}^n are algebraic varieties
- (Kirchheim-Preiss) Uniformly distributed counting measures with **finite** support in \mathbb{R}^2 are supported on either the vertices of a regular polygon, or two regular m-gons lying on a common circle

- (Kirchheim-Preiss) Bounded supports of Euclidean uniformly distributed measures are contained in spheres
- (C, Tyson) Bounded supports of uniformly distributed measures on \mathbb{H}^n are algebraic varieties
- (Kirchheim-Preiss) Uniformly distributed counting measures with **finite** support in \mathbb{R}^2 are supported on either the vertices of a regular polygon, or two regular m-gons lying on a common circle
- Characterization of uniformly distributed counting measures with **finite** support in \mathbb{H}^1 is open.

A set *A* in a metric space (X,d) is called *equilateral* if d(x,y) is constant for all $x,y \in A$, $x \neq y$.

• Counting measure is uniformly distributed on each equilateral set

A set *A* in a metric space (X, d) is called *equilateral* if d(x, y) is constant for all $x, y \in A$, $x \neq y$.

- Counting measure is uniformly distributed on each equilateral set
- (C, Tyson) Characterization equilateral triangles in $(\mathbb{H}, d_{\mathbb{H}})$. Such triangles fall into three distinct classes:
 - 1 two vertices lie on a vertical line,
 - 2 two vertices lie on a horizontal line,
 - 3 no two vertices lie on either a horizontal or a vertical line.

A set *A* in a metric space (X, d) is called *equilateral* if d(x, y) is constant for all $x, y \in A$, $x \neq y$.

- Counting measure is uniformly distributed on each equilateral set
- (C, Tyson) Characterization equilateral triangles in $(\mathbb{H}, d_{\mathbb{H}})$. Such triangles fall into three distinct classes:
 - 1 two vertices lie on a vertical line,
 - 2 two vertices lie on a horizontal line,
 - 3 no two vertices lie on either a horizontal or a vertical line.
- We declined to characterize equilateral 4 point sets (probably tractable)

A set *A* in a metric space (X, d) is called *equilateral* if d(x, y) is constant for all $x, y \in A$, $x \neq y$.

- Counting measure is uniformly distributed on each equilateral set
- (C, Tyson) Characterization equilateral triangles in $(\mathbb{H}, d_{\mathbb{H}})$. Such triangles fall into three distinct classes:
 - 1 two vertices lie on a vertical line,
 - 2 two vertices lie on a horizontal line,
 - 3 no two vertices lie on either a horizontal or a vertical line.
- We declined to characterize equilateral 4 point sets (probably tractable)
- Unknown if there exist equilateral 5 point subsets of $(\mathbb{H}^1, d_{\mathbb{H}})!$

• (Preiss) For m=1,2 all m-uniform measures are m-flat; a measure μ is m-flat if $\mu=c_{\mu}\mathcal{H}^m \, \bigcup V,V \in G(n,m)$.

- (Preiss) For m=1,2 all m-uniform measures are m-flat; a measure μ is m-flat if $\mu=c_{\mu}\mathcal{H}^m \, \bigcup V,V \in G(n,m)$.
- (Preiss) The light cone $C = \{x \in \mathbb{R}^4 : x_1^2 = x_2^2 + x_3^2 + x_4^2\}$ is 3-uniform!

- (Preiss) For m=1,2 all m-uniform measures are m-flat; a measure μ is m-flat if $\mu=c_{\mu}\mathcal{H}^m \, \bigcup V,V \in G(n,m)$.
- (Preiss) The light cone $C = \{x \in \mathbb{R}^4 : x_1^2 = x_2^2 + x_3^2 + x_4^2\}$ is 3-uniform!
- (Preiss-Kowalski) Every (n-1)-uniform measure in \mathbb{R}^n is either (n-1)-flat or is a constant multiple of \mathcal{H}^{n-1} on some isometric copy of $C \times \mathbb{R}^{n-4}$.

- (Preiss) For m=1,2 all m-uniform measures are m-flat; a measure μ is m-flat if $\mu=c_{\mu}\mathcal{H}^m \, \bigcup V,V \in G(n,m)$.
- (Preiss) The light cone $C = \{x \in \mathbb{R}^4 : x_1^2 = x_2^2 + x_3^2 + x_4^2\}$ is 3-uniform!
- (Preiss-Kowalski) Every (n-1)-uniform measure in \mathbb{R}^n is either (n-1)-flat or is a constant multiple of \mathcal{H}^{n-1} on some isometric copy of $C \times \mathbb{R}^{n-4}$.
- Classification open for $3 \le m < n 1$.

May 26, 2016

24 / 33

Ongoing project with V. Magnani and J. Tyson.

Marstrand's theorem in $\mathbb{H}^n \implies$ there are no s-uniform measures for $s \notin \mathbb{N}$.

Ongoing project with V. Magnani and J. Tyson.

Marstrand's theorem in $\mathbb{H}^n \Longrightarrow$ there are no *s*-uniform measures for $s \notin \mathbb{N}$.

Conjecture

Let μ be a \overline{m} -uniform measure on \mathbb{H} . Then

- if $\overline{m} = 1$, then $\mu = c_{\mu} \mathcal{H}^1 \sqcup L$ for some horizontal line L,
- if $\overline{m} = 2$, then $\mu = c_{\mu} \mathcal{H}^2 \sqcup V$ for some vertical line V,
- if $\overline{m} = 3$, then $\mu = c_{\mu} \mathcal{H}^3 \sqcup W$ for some vertical plane W.

Ongoing project with V. Magnani and J. Tyson.

Marstrand's theorem in $\mathbb{H}^n \Longrightarrow$ there are no *s*-uniform measures for $s \notin \mathbb{N}$.

Conjecture

Let μ be a \overline{m} -uniform measure on \mathbb{H} . Then

• if $\overline{m} = 1$, then $\mu = c_{\mu} \mathcal{H}^1 \sqcup L$ for some horizontal line L, TRUE

Ongoing project with V. Magnani and J. Tyson.

Marstrand's theorem in $\mathbb{H}^n \Longrightarrow$ there are no *s*-uniform measures for $s \notin \mathbb{N}$.

Conjecture

Let μ *be a* \overline{m} *-uniform measure on* \mathbb{H} *. Then*

- if $\overline{m} = 1$, then $\mu = c_{\mu} \mathcal{H}^1 \sqcup L$ for some horizontal line L, TRUE
- if $\overline{m} = 2$, then $\mu = c_{\mu} \mathcal{H}^2 \sqcup V$ for some vertical line V, when $\operatorname{supp}(\mu)$ is contained in a vertical plane

Ongoing project with V. Magnani and J. Tyson.

Marstrand's theorem in $\mathbb{H}^n \Longrightarrow$ there are no *s*-uniform measures for $s \notin \mathbb{N}$.

Conjecture

Let μ be a \overline{m} -uniform measure on \mathbb{H} . Then

- if $\overline{m} = 1$, then $\mu = c_{\mu} \mathcal{H}^1 \bot L$ for some horizontal line L, TRUE
- if $\overline{m} = 2$, then $\mu = c_{\mu} \mathcal{H}^2 \, \bigcup V$ for some vertical line V, when $\operatorname{supp}(\mu)$ is contained in a vertical plane
- *if* $\overline{m} = 3$, then $\mu = c_{\mu} \mathcal{H}^3 \sqcup W$ for some vertical plane W when $supp(\mu)$ is contained in a vertically ruled surface

Denote

$$\Sigma = \Sigma_{(0)} \cup \cdots \cup \Sigma_{(m)},$$

the stratification of the support $\Sigma = \text{supp}(\mu)$ of a uniform measure μ into analytic submanifolds of dimensions between 0 and m.

Theorem

Let μ be a 2-uniform measure on \mathbb{H} . Then

- (i) $\Sigma_{(1)}$ is a fully nonhorizontal curve.
- (ii) the following geometric PDE is satisfied at all points of $\Sigma_{(1)}$:

$$k_{\gamma}\circ\pi=rac{3}{2}k_{\Sigma}^{0},$$

for
$$\gamma = \pi \circ \Sigma$$

 k_{γ} = the usual curvature of a plane curve

 $k^0_\Sigma=$ the intrinsic curvature of the (nonhorizontal) curve $\Sigma\subset\mathbb{H}^1$

Theorem

Let μ be a 2-uniform measure on \mathbb{H} . Then

- (i) $\Sigma_{(1)}$ is a fully nonhorizontal curve.
- (ii) the following geometric PDE is satisfied at all points of $\Sigma_{(1)}$:

$$\frac{2}{3}\tau(\dot{\Sigma})(\dot{x}\ddot{y}-\dot{y}\ddot{x})=|\dot{\gamma}|^4$$

for
$$\gamma = \pi \circ \Sigma$$
.

Theorem

Let μ be a 3-uniform measure on \mathbb{H} . Then

- (i) All points of in the top dimensional stratum Σ_2 of Σ are noncharacteristic.
- (ii) The following geometric PDE is satisfied at all points of Σ_2 :

$$\mathcal{H}_0^2 - 4\mathcal{K}_0 - \frac{5}{2}\mathcal{P}_0^2 = 0.$$

 \mathcal{H}_0 = horizontal mean curvature

 $\mathcal{P}_0 = \text{imaginary curvature}$

 \mathcal{K}_0 = the horizontal Gauss curvature.

■ $x \in \Sigma$ is noncharacteristic if $T_x\Sigma \neq H_x\mathbb{H}$. At such points, there exists a unique curve $\gamma_x : (-\epsilon, \epsilon) \to \Sigma$, passing through x, s.t. $\gamma_x'(0) \in H_x\mathbb{H} \cap T_x\Sigma =: HT_x\Sigma$.

$$\mathcal{H}_0(x) := \kappa_{\pi \circ \gamma_x}(0),$$

where κ_c denotes the *curvature* of a curve c in \mathbb{R}^2 .

■ $x \in \Sigma$ is noncharacteristic if $T_x\Sigma \neq H_x\mathbb{H}$. At such points, there exists a unique curve $\gamma_x : (-\epsilon, \epsilon) \to \Sigma$, passing through x, s.t. $\gamma_x'(0) \in H_x\mathbb{H} \cap T_x\Sigma =: HT_x\Sigma$.

$$\mathcal{H}_0(x) := \kappa_{\pi \circ \gamma_x}(0),$$

where κ_c denotes the *curvature* of a curve c in \mathbb{R}^2 .

■ The *metric normal* at a noncharacteristic point $x \in \Sigma$, denoted $\mathcal{N}_x\Sigma$, is the set of points $y \in \mathbb{H}$ such that $\mathrm{dist}_{cc}(y,\Sigma) = d_{cc}(y,x)$.

■ $x \in \Sigma$ is noncharacteristic if $T_x\Sigma \neq H_x\mathbb{H}$. At such points, there exists a unique curve $\gamma_x : (-\epsilon, \epsilon) \to \Sigma$, passing through x, s.t. $\gamma_x'(0) \in H_x\mathbb{H} \cap T_x\Sigma =: HT_x\Sigma$.

$$\mathcal{H}_0(x) := \kappa_{\pi \circ \gamma_x}(0),$$

where κ_c denotes the *curvature* of a curve *c* in \mathbb{R}^2 .

- The *metric normal* at a noncharacteristic point $x \in \Sigma$, denoted $\mathcal{N}_x\Sigma$, is the set of points $y \in \mathbb{H}$ such that $\mathrm{dist}_{cc}(y,\Sigma) = d_{cc}(y,x)$.
- The *imaginary curvature* of Σ at x, denoted $\mathcal{P}_0(x)$, is the horizontal curvature of $\mathcal{N}_x\Sigma$ at x.

■ $x \in \Sigma$ is noncharacteristic if $T_x\Sigma \neq H_x\mathbb{H}$. At such points, there exists a unique curve $\gamma_x : (-\epsilon, \epsilon) \to \Sigma$, passing through x, s.t. $\gamma_x'(0) \in H_x\mathbb{H} \cap T_x\Sigma =: HT_x\Sigma$.

$$\mathcal{H}_0(x) := \kappa_{\pi \circ \gamma_x}(0),$$

where κ_c denotes the *curvature* of a curve *c* in \mathbb{R}^2 .

- The *metric normal* at a noncharacteristic point $x \in \Sigma$, denoted $\mathcal{N}_x\Sigma$, is the set of points $y \in \mathbb{H}$ such that $\mathrm{dist}_{cc}(y,\Sigma) = d_{cc}(y,x)$.
- The *imaginary curvature* of Σ at x, denoted $\mathcal{P}_0(x)$, is the horizontal curvature of $\mathcal{N}_x\Sigma$ at x.
- The *horizontal Gauss curvature* of Σ at x, is defined as

$$\mathcal{K}_0 = \langle J\vec{n}_0, \nabla_0(\mathcal{P}_0) \rangle - \mathcal{P}_0^2$$

where
$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
.

■ Connections of densities to intrinsic notions of rectifiability: e.g. in the sense of Mattila, Serapioni, Serra-Cassano

■ Connections of densities to intrinsic notions of rectifiability: e.g. in the sense of Mattila, Serapioni, Serra-Cassano Note: The t-axis, $T = \{(0,0,t) : t \in \mathbb{R}\}$ is 2-uniform, while not intrinsically rectifiable.

- Connections of densities to intrinsic notions of rectifiability: e.g. in the sense of Mattila, Serapioni, Serra-Cassano **Note**: The *t*-axis, $T = \{(0,0,t) : t \in \mathbb{R}\}$ is 2-uniform, while not intrinsically rectifiable.
- Marstrand's theorem for other metrics? e.g. Carnot-Caratheodory metric d_{cc} , or $d_{\mathbb{H}}^{\infty}(p,q) = \|q^{-1} \cdot p\|_{\mathbb{H}}^{\infty}$ where $\|(z,t)\|_{\mathbb{H}}^{\infty} = \max\{|z|_{\mathbb{R}^{2n}}, |t|^{1/2}\}$

- Connections of densities to intrinsic notions of rectifiability: e.g. in the sense of Mattila, Serapioni, Serra-Cassano **Note**: The *t*-axis, $T = \{(0,0,t) : t \in \mathbb{R}\}$ is 2-uniform, while not intrinsically rectifiable.
- Marstrand's theorem for other metrics? e.g. Carnot-Caratheodory metric d_{cc} , or $d_{\mathbb{H}}^{\infty}(p,q) = \|q^{-1} \cdot p\|_{\mathbb{H}}^{\infty}$ where $\|(z,t)\|_{\mathbb{H}}^{\infty} = \max\{|z|_{\mathbb{R}^{2n}}, |t|^{1/2}\}$
- Classification of uniform measures in $(\mathbb{H}^1, d_{\mathbb{H}})$?

Proof of Kirchheim-Preiss theorem in \mathbb{H}^n

Let $x_0 \in \text{supp}(\mu)$ and define

$$F(x,s) = \int_{\mathbb{R}^{2n+1}} (\exp(-s||x^{-1} \cdot z||_{\mathbb{H}}^{4}) - \exp(-s||x_{0}^{-1} \cdot z||_{\mathbb{H}}^{4})) d\mu(z),$$

for $x \in \mathbb{H}^n$ and s > 0.

- **1** F(x,s) is well defined (does not depend on x_0)
- $|F(x,s)| < \infty$ for all $x \in \mathbb{H}^n, s > 0$
- F(x,s) = 0 for all $x \in \text{supp}(\mu)$ and s > 0
- 4 If $x \notin \text{supp}(\mu)$, then $F(x, s) \neq 0$ for some s > 0
- **5** supp $(\mu) = \bigcap_{s>0} \{x : F(x,s) = 0\}$

Fix s > 0. Suffices to show that

$$F_1(x) = \int_{\mathbb{P}^{2n+1}} \exp(-s \|x^{-1} \cdot z\|_{\mathbb{H}}^4) \, d\mu(z)$$

is real analytic.

Proof of Kirchheim-Preiss theorem in \mathbb{H}^n

$$F_1(x) = \int_{\mathbb{R}^{2n+1}} \exp(-s \|x^{-1} \cdot z\|_{\mathbb{H}}^4) \, d\mu(z)$$

Define $\tilde{F}_1: \mathbb{C}^{2n+1} \to \mathbb{C}$ for $w = (w_1, \dots, w_{2n+1}) \in \mathbb{C}^{2n+1}$ as

$$\tilde{F}_{1}(w) = \int_{\mathbb{R}^{2n+1}} \exp(-s \left[\left(\sum_{i=1}^{2n} (z_{i} - w_{i})^{2} \right)^{2} + \left(z_{2n+1} - w_{2n+1} \right) + 2 \sum_{i=1}^{n} (w_{i} z_{i+n} - w_{i+n} z_{i}) \right] d\mu(z).$$

- $|\tilde{F}_1(w)| < \infty \text{ for all } w \in \mathbb{C}^{2n+1}$
- $\blacksquare \tilde{F_1}|_{\mathbb{R}^{2n+1}} = F_1$
- \tilde{F}_1 is holomorphic on \mathbb{C}^{2n+1} , so F_1 is real analytic in \mathbb{R}^{2n+1} .