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Densities of measures

Let µ be a Radon measure on a metric space (X, d). The upper and
lower s-densities of µ at x ∈ X are

Θ∗s(µ, x) = lim sup
r→0

µ(B(x, r))
rs and Θs

∗(µ, x) = lim inf
r→0

µ(B(x, r))
rs .

If the limit exists, call it the s-density of µ at x and denote it by Θs(µ, x).

Lebesgue density theorem : A ⊂ Rn, Ln-measurable =⇒

Θn(Ln A, ·) =

{
Ln(B(0, 1)), Ln − a.e. in A
0 Ln − a.e. in Rn \ A
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s-dimensional Hausdorff measuresHs

Let A ⊂ (X, d) be any set. Let s ≥ 0 be any nonnegative real number
1 For any δ > 0 cover A by sets E1,E2, . . . of diameter ≤ δ

2 Weight each set in the cover by its diameter to power s
3 Optimize over all such covers

Hs
δ(A) := inf

{ ∞∑
i=1

(diam Ei)
s : A ⊂

∞⋃
i=1

Ei; diam Ei ≤ δ

}

4 Use only finer and finer covers

Hs(A) := lim
δ→0
Hs
δ(A)

Hs is called s-dimensional Hausdorff measure
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Hausdorff dimension

For any set A ⊂ (X, d), there is a unique number s ≥ 0 such that
1 Hs(A) =∞ for all s < d
2 Hs(A) = 0 for all s > d

The number s = dimH(A) where the transition happens is called
the Hausdorff dimension of A.
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Hausdorff dimension of Cantor sets

For all λ ∈ (0, 1/2), the Cantor set C(λ) has Hausdorff dimension

dimH C(λ) =
log(2)

log(1/λ)
∈ (0, 1)

dimH C(1/4) = log(2)/ log(4) = 0.5000000...

dimH C(1/3) = log(2)/ log(3) = 0.6309292...

dimH C(9/20) = log(2)/ log(20/9) = 0.8680532...

dimH C(λ) ↓ 0 as λ ↓ 0

dimH C(λ) ↑ 1 as λ ↑ 1/2
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Densities for Hausdorff measures

If A ⊂ Rn,Hs-measurable andHs(A) <∞,

1 ≤ Θ∗s(Hs A, ·) ≤ 2s, Hs-a.e. in A

and
Θs(Hs A, ·) = 0,Hs-a.e. in Rn \ A.

May 26, 2016 6 / 33



Densities for Hausdorff measures

If A ⊂ Rn,Hs-measurable andHs(A) <∞,

1 ≤ Θ∗s(Hs A, ·) ≤ 2s, Hs-a.e. in A

and
Θs(Hs A, ·) = 0,Hs-a.e. in Rn \ A.

May 26, 2016 6 / 33



Marstrand density theorem

Theorem (Marstrand 1954 and 1964)

Suppose for some s > 0, that there exists a Radon measure µ in Rn s.t.
Θs(µ, ·) exists and is positive and finite in a set of positive µ-measure. Then
s ∈ N.

Sets with noninteger Hausdorff di-
mension are irregular at ’generic’
points.
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Preiss density theorem

Theorem (Preiss 1987)

Let µ be a Radon measure in Rn such that the density Θm(µ, ·),m ∈ N, exists
and is positive and finite µ a.e. Then supp(µ) is m-rectifiable and
µ� Hm supp(µ).

E ⊂ Rn is m-rectifiable if there exist countably many m-dimensional
Lipschitz graphs Mi such that

Hm(E \ ∪Mi) = 0.

Eariler work by Besicovitch, Morse-Randolph, Moore.
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A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)

Let µ be a Radon measure in Rn and let s /∈ Z. Then∫ ∫∞
0

(
µ(B(x,r))

rs − µ(B(x,2r))
(2r)s

)2
dr
r dµ(x) ≈

∫ ∫∞
0

(
µ(B(x,r))

rs

)2
dr
r dµ(x).

The theorem fails for n ∈ N.
Wolff potentials,

∫∞
0

µ(B(x,r))2

r2s
dr
r used to characterize Sobolev

spaces.

(C, Garnett, Le, Tolsa) introduced ∆s
µ(x, r) = µ(B(x,r))

rs − µ(B(x,2r))
(2r)s to

give a characterization of uniform rectifiability using densities.

May 26, 2016 9 / 33



A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)

Let µ be a Radon measure in Rn and let s /∈ Z. Then∫ ∫∞
0

(
µ(B(x,r))

rs − µ(B(x,2r))
(2r)s

)2
dr
r dµ(x) ≈

∫ ∫∞
0

(
µ(B(x,r))

rs

)2
dr
r dµ(x).

The theorem fails for n ∈ N.

Wolff potentials,
∫∞

0
µ(B(x,r))2

r2s
dr
r used to characterize Sobolev

spaces.

(C, Garnett, Le, Tolsa) introduced ∆s
µ(x, r) = µ(B(x,r))

rs − µ(B(x,2r))
(2r)s to

give a characterization of uniform rectifiability using densities.

May 26, 2016 9 / 33



A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)

Let µ be a Radon measure in Rn and let s /∈ Z. Then∫ ∫∞
0

(
µ(B(x,r))

rs − µ(B(x,2r))
(2r)s

)2
dr
r dµ(x) ≈

∫ ∫∞
0

(
µ(B(x,r))

rs

)2
dr
r dµ(x).

The theorem fails for n ∈ N.
Wolff potentials,

∫∞
0

µ(B(x,r))2

r2s
dr
r used to characterize Sobolev

spaces.

(C, Garnett, Le, Tolsa) introduced ∆s
µ(x, r) = µ(B(x,r))

rs − µ(B(x,2r))
(2r)s to

give a characterization of uniform rectifiability using densities.

May 26, 2016 9 / 33



A Marstrand-type theorems via Wolff potentials

Theorem (C, Prat, Tolsa)

Let µ be a Radon measure in Rn and let s /∈ Z. Then∫ ∫∞
0

(
µ(B(x,r))

rs − µ(B(x,2r))
(2r)s

)2
dr
r dµ(x) ≈

∫ ∫∞
0

(
µ(B(x,r))

rs

)2
dr
r dµ(x).

The theorem fails for n ∈ N.
Wolff potentials,

∫∞
0

µ(B(x,r))2

r2s
dr
r used to characterize Sobolev

spaces.

(C, Garnett, Le, Tolsa) introduced ∆s
µ(x, r) = µ(B(x,r))

rs − µ(B(x,2r))
(2r)s to

give a characterization of uniform rectifiability using densities.

May 26, 2016 9 / 33



A lemma from the proof

Lemma (C, Prat, Tolsa)

Let µ be a nontrivial Radon measure in Rn and let s /∈ Z. Then there exist
x0 ∈ supp(µ) and r0 > 0 such that ∆s

µ(x0, r0) 6= 0, that is

µ(B(x0, r0))

rs
0

6= µ(B(x0, 2r0))

(2r0)s .

The proof depends on the Euclidean metric.
(C, Rajala) True for s < 1 even when (X, d) is a complete metric
space.
Unknown for other metrics in Rn.
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Results for other metric spaces

Several papers by A. Lorent about metrics in Rn defined by centrally
symmetric convex polytopes. For example, he proves

Marstrand’s theorem for d∞ and s ≤ 2.
locally 2-uniform measures in (R3, d∞) are rectifiable.
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The Heisenberg group

Hn = R2n+1 3 p = (z, t) = (x, y, t) = (x1, . . . , xn, y1, . . . , yn, t)
(z, t) ∗ (z′, t′) = (z + z′, t + t′ + 2ω(z, z′)),
where ω(z, z′) = x · y′ − x′ · y
Horizontal distribution:

HpHn = span{X1(p),Y1(p), . . . ,Xn(p),Yn(p)}

X1 =
∂

∂x1
+ 2y1

∂

∂t
, . . . ,Xn =

∂

∂xn
+ 2yn

∂

∂t

Y1 =
∂

∂y1
− 2x1

∂

∂t
, . . . ,Yn =

∂

∂yn
− 2xn

∂

∂t
Gauge (Korányi) metric:

dH(p, q) = ‖p−1 ∗ q‖H, ‖(z, t)‖H = (|z|4 + t2)1/4

Dilations: δr : Hn → Hn, r > 0,

δr(z, t) = (rz, r2t)
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The geometry of H: Sub-Riemannian structure
Let X1,X2 be the left invariant vector fields

X1 = ∂x1 + 2x2∂x3 and X2 = ∂x2 − 2x1∂x3 .

Motion is only allowed along the horizontal planes:

HpH1 = span{X1(p),X2(p)}.
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Balls in (H, dH)

dimH(H) = 4
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Marstrand’s theorem in the Heisenberg group

Recall, dH(p, q) = ‖p−1 ∗ q‖H, ‖(z, t)‖H = (|z|4 + t2)1/4

Theorem (C, Tyson)

Let µ be a Radon measure in (Hn, dH). If the density Θs
H(µ, ·) exists and is

positive and finite in a set of positive µ-measure, then s ∈ N.

Remarks

Marstrand’s proof is very Euclidean.
Another proof, due to Kirchheim and Preiss, uses uniformly
distributed measures.
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Uniformly distributed and uniform measures

Definition
A Radon measure on a metric space (X, d) is called uniformly
distributed if

µ(B(x, r)) = µ(B(y, r))

for all x, y ∈ supp(µ) and all r > 0.

Definition
Let s > 0. A Radon measure on a metric space (X, d) is called
s-uniform if there exists some constant c > 0 such that

µ(B(x, r)) = crs

for all x ∈ supp(µ) and all r > 0.
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Kirchheim-Preiss Theorem

Theorem (Kirchheim-Preiss)

Let µ be a uniformly distributed measure in Rn. Then supp(µ) is a real
analytic variety.

Theorem (C, Tyson)

Let µ be a uniformly distributed measure in (Hn, dH). Then supp(µ) is a real
analytic variety in R2n+1.
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Tangent measures and uniform measures in
Marstrand’s theorem

Let G be Rn or Hn. Let µ be a Radon measure on G. For a ∈ G, r > 0,
denote the blow-ups of µ from B(a, r) to B(0, 1) by

µa,r(A) = µ(a ∗ (δr(A)) ,A ⊂ G.

ν is a tangent measure of µ at a ∈ G if ν is a Radon measure on G with
ν(G) > 0 and there are ci > 0 and ri > 0, i ∈ N, such that ri → 0 and

ciµa,ri → ν weakly as i→∞.

We denote by Tan(µ, a) the set of all tangent measures of µ at a.

Proposition

Let s > 0. Let µ be a Radon measure such that 0 < Θs(µ, ·) <∞ exists µ-a.e.
in A ⊂ G. Then for µ a.e. a ∈ A, Tan(µ, a), consists of s-uniform measures.
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Marstrand theorem: scheme of the proof

0 < Θs(µ, ·) <∞ exists µ− a.e. in A ⊂ Hn

w�
∃ s− uniform measure νw� (Kirhchheim-Preiss Theorem)

supp(ν) is a real analytic varietyw� (Lojasiewicz Theorem)

supp(ν) is a countable union of real analytic submanifoldsw� (Gromov Theorem)

dimH(supp(ν)) ∈ Nw�
s ∈ N.
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Hausdorff dimension of submanifolds of Hn

Theorem (Gromov)

Let Σ be an m-dimensional C1,1 submanifold in Hn, then

dimH(Σ) = m̄ ∈ {m,m + 1}.

   New Section 1 Page 1    
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Wolff potentials in (Hn, dH)

Lemma (C, Tyson)

Let µ be a nontrivial Radon measure in (Hn, dH) and let s /∈ Z. Then there
exist x0 ∈ supp(µ) and r0 > 0 such that

µ(B(x0, r0))

rs
0

6= µ(B(x0, 2r0))

(2r0)s .

w�
Theorem (C, Tyson)

Let µ be a Radon measure in (Hn, dH) and let s /∈ Z. Then∫ ∫∞
0

(
µ(B(x,r))

rs − µ(B(x,2r))
(2r)s

)2
dr
r dµ(x) ≈
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0

µ(B(x,r))2

r2s
dr
r dµ(x).
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Lemma (C, Tyson)

Let µ be a nontrivial Radon measure in (Hn, dH) and let s /∈ Z. Then there
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Uniformly distributed measures with bdd support

(Kirchheim-Preiss) Bounded supports of Euclidean uniformly
distributed measures are contained in spheres

(C, Tyson) Bounded supports of uniformly distributed measures
on Hn are algebraic varieties
(Kirchheim-Preiss) Uniformly distributed counting measures with
finite support in R2 are supported on either the vertices of a
regular polygon, or two regular m-gons lying on a common circle
Characterization of uniformly distributed counting measures with
finite support in H1 is open.
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Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if d(x, y) is constant
for all x, y ∈ A, x 6= y.

Counting measure is uniformly distributed on each equilateral set

(C, Tyson) Characterization equilateral triangles in (H, dH). Such
triangles fall into three distinct classes:

1 two vertices lie on a vertical line,
2 two vertices lie on a horizontal line,
3 no two vertices lie on either a horizontal or a vertical line.

We declined to characterize equilateral 4 point sets (probably
tractable)
Unknown if there exist equilateral 5 point subsets of (H1, dH)!

May 26, 2016 23 / 33



Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if d(x, y) is constant
for all x, y ∈ A, x 6= y.

Counting measure is uniformly distributed on each equilateral set
(C, Tyson) Characterization equilateral triangles in (H, dH). Such
triangles fall into three distinct classes:

1 two vertices lie on a vertical line,
2 two vertices lie on a horizontal line,
3 no two vertices lie on either a horizontal or a vertical line.

We declined to characterize equilateral 4 point sets (probably
tractable)
Unknown if there exist equilateral 5 point subsets of (H1, dH)!

May 26, 2016 23 / 33



Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if d(x, y) is constant
for all x, y ∈ A, x 6= y.

Counting measure is uniformly distributed on each equilateral set
(C, Tyson) Characterization equilateral triangles in (H, dH). Such
triangles fall into three distinct classes:

1 two vertices lie on a vertical line,
2 two vertices lie on a horizontal line,
3 no two vertices lie on either a horizontal or a vertical line.

We declined to characterize equilateral 4 point sets (probably
tractable)

Unknown if there exist equilateral 5 point subsets of (H1, dH)!

May 26, 2016 23 / 33



Uniformly distributed measures with finite support

A set A in a metric space (X, d) is called equilateral if d(x, y) is constant
for all x, y ∈ A, x 6= y.

Counting measure is uniformly distributed on each equilateral set
(C, Tyson) Characterization equilateral triangles in (H, dH). Such
triangles fall into three distinct classes:

1 two vertices lie on a vertical line,
2 two vertices lie on a horizontal line,
3 no two vertices lie on either a horizontal or a vertical line.

We declined to characterize equilateral 4 point sets (probably
tractable)
Unknown if there exist equilateral 5 point subsets of (H1, dH)!

May 26, 2016 23 / 33



Uniform measures in (Rn, dE)

(Preiss) For m = 1, 2 all m-uniform measures are m-flat; a measure
µ is m-flat if µ = cµHm V,V ∈ G(n,m).

(Preiss) The light cone C = {x ∈ R4 : x2
1 = x2

2 + x2
3 + x2

4} is
3-uniform!
(Preiss-Kowalski) Every (n− 1)-uniform measure in Rn is either
(n− 1)-flat or is a constant multiple ofHn−1 on some isometric
copy of C× Rn−4.
Classification open for 3 ≤ m < n− 1.
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Classification of uniform measures in (H1, dH)

Ongoing project with V. Magnani and J. Tyson.

Marstrand’s theorem in Hn =⇒ there are no s-uniform measures for
s /∈ N.

Conjecture

Let µ be a m-uniform measure on H. Then

if m = 1, then µ = cµH1 L for some horizontal line L,

if m = 2, then µ = cµH2 V for some vertical line V,

if m = 3, then µ = cµH3 W for some vertical plane W.
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Classification of uniform measures in (H1, dH)

Denote
Σ = Σ(0) ∪ · · · ∪ Σ(m),

the stratification of the support Σ = supp(µ) of a uniform measure µ
into analytic submanifolds of dimensions between 0 and m.

Theorem
Let µ be a 2-uniform measure on H. Then

(i) Σ(1) is a fully nonhorizontal curve.
(ii) the following geometric PDE is satisfied at all points of Σ(1):

kγ ◦ π =
3
2

k0
Σ,

for γ = π ◦ Σ

kγ = the usual curvature of a plane curve

k0
Σ = the intrinsic curvature of the (nonhorizontal) curve Σ ⊂ H1
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Classification of uniform measures in (H1, dH)

Theorem
Let µ be a 2-uniform measure on H. Then

(i) Σ(1) is a fully nonhorizontal curve.
(ii) the following geometric PDE is satisfied at all points of Σ(1):

2
3
τ(Σ̇)(ẋÿ− ẏẍ) = |γ̇|4

for γ = π ◦ Σ.
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Classification of uniform measures in (H1, dH)

Theorem
Let µ be a 3-uniform measure on H. Then

(i) All points of in the top dimensional stratum Σ2 of Σ are
noncharacteristic.

(ii) The following geometric PDE is satisfied at all points of Σ2:

H2
0 − 4K0 −

5
2
P2

0 = 0.

H0 = horizontal mean curvature
P0 = imaginary curvature
K0 = the horizontal Gauss curvature.
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Curvatures

x ∈ Σ is noncharacteristic if TxΣ 6= HxH. At such points, there exists
a unique curve γx : (−ε, ε)→ Σ, passing through x, s.t.
γ′x(0) ∈ HxH ∩ TxΣ =: HTxΣ.

H0(x) := κπ◦γx(0),

where κc denotes the curvature of a curve c in R2.

The metric normal at a noncharacteristic point x ∈ Σ, denoted NxΣ,
is the set of points y ∈ H such that distcc(y,Σ) = dcc(y, x).
The imaginary curvature of Σ at x, denoted P0(x), is the horizontal
curvature of NxΣ at x.
The horizontal Gauss curvature of Σ at x, is defined as

K0 = 〈J~n0,∇0(P0)〉 − P2
0

where J =

(
0 1
−1 0

)
.
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Questions/Problems

Connections of densities to intrinsic notions of rectifiability:
e.g. in the sense of Mattila, Serapioni,Serra-Cassano

Note: The t-axis, T = {(0, 0, t) : t ∈ R} is 2-uniform, while not
intrinsically rectifiable.
Marstrand’s theorem for other metrics?
e.g. Carnot-Caratheodory metric dcc, or d∞H (p, q) = ‖q−1 · p‖∞H
where ‖(z, t)‖∞H = max{|z|R2n , |t|1/2}
Classification of uniform measures in (H1, dH)?
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Proof of Kirchheim-Preiss theorem in Hn

Let x0 ∈ supp(µ) and define

F(x, s) =

∫
R2n+1

(exp(−s‖x−1 · z‖4
H)− exp(−s‖x−1

0 · z‖
4
H)) dµ(z),

for x ∈ Hn and s > 0.
1 F(x, s) is well defined (does not depend on x0)
2 |F(x, s)| <∞ for all x ∈ Hn, s > 0
3 F(x, s) = 0 for all x ∈ supp(µ) and s > 0
4 If x /∈ supp(µ), then F(x, s) 6= 0 for some s > 0
5 supp(µ) =

⋂
s>0{x : F(x, s) = 0}

Fix s > 0. Suffices to show that

F1(x) =

∫
R2n+1

exp(−s‖x−1 · z‖4
H) dµ(z)

is real analytic.
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Proof of Kirchheim-Preiss theorem in Hn

F1(x) =

∫
R2n+1

exp(−s‖x−1 · z‖4
H) dµ(z)

Define F̃1 : C2n+1 → C for w = (w1, . . . ,w2n+1) ∈ C2n+1 as

F̃1(w) =

∫
R2n+1

exp(−s
[( 2n∑

i=1

(zi − wi)
2)2

+
(
z2n+1 − w2n+1

+2
n∑

i=1

(wizi+n − wi+nzi)
)2
]
)dµ(z).

|F̃1(w)| <∞ for all w ∈ C2n+1

F̃1|R2n+1 = F1

F̃1 is holomorphic on C2n+1, so F1 is real analytic in R2n+1.
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